Showing posts with label নোবেল পুরষ্কার. Show all posts
Showing posts with label নোবেল পুরষ্কার. Show all posts

Monday, 9 December 2024

কৃত্রিম স্নায়ুতন্ত্র ও যন্ত্রের লেখাপড়া

 



মানুষ যখন থেকে বুঝতে পেরেছে যে তাদের মগজে বুদ্ধি আছে এবং বুদ্ধিবৃত্তিক চর্চার মাধ্যমে বুদ্ধির পরিমাণ এবং তীক্ষ্ণতা বাড়ানো যায় – তখন থেকেই জানার চেষ্টা করছে বুদ্ধিমত্তা ব্যাপারটি আসলে কী। মানুষ গভীরভাবে বুঝতে চেষ্টা করছে – আমাদের মস্তিষ্ক কীভাবে কাজ করে এবং যান্ত্রিক মস্তিষ্ক বানিয়ে তাকে স্বয়ংক্রিয়ভাবে চালানো যায় কীভাবে।             

গত আড়াই হাজার বছর ধরে ক্রমাগত বৈজ্ঞানিক অনুসন্ধিৎসা এবং গবেষণা কাজে লাগিয়ে মানুষ তার জীবনযাপন আরামদায়ক ও নিরাপদ করার জন্য যা যা লাগে তার প্রায় সবকিছুই উদ্ভাবন করে ফেলার পরও সন্তুষ্ট নয়। যন্ত্র চালানোর কাজটিও এখন যন্ত্রের হাতে তুলে দিচ্ছে তারা।

যখন থেকে আমাদের আধুনিক কম্পিউটার প্রযুক্তি সহজলভ্য হয়ে গেছে তখন থেকেই আমাদের দৈনন্দিন জীবনযাপন দ্রুত বদলে যেতে শুরু করেছে। এখন আমরা শুধুমাত্র যে শারীরিক কাজের জন্য যন্ত্রনির্ভর হয়ে উঠছি তা নয়, মানসিক কাজ – যেমন সিদ্ধান্ত গ্রহণ প্রক্রিয়াতেও যন্ত্রের উপর নির্ভরশীল হয়ে পড়ছি। মানুষ এখন যন্ত্রকে বুদ্ধিমান প্রাণির মতো সিদ্ধান্ত গ্রহণের সক্ষমতা তৈরি করে দিতে শুরু করেছে। আর যন্ত্র যখন বুদ্ধিমান প্রাণির মতো সিদ্ধান্ত নিতে সক্ষম হচ্ছে তখন সেই বুদ্ধিমত্তার ব্যাপারটি হয়ে দাঁড়াচ্ছে কৃত্রিম বুদ্ধিমত্তা – বা আর্টিফিশিয়াল ইন্টেলিজেন্স।

আমাদের মগজে স্নায়ুকোষগুলি যেমন প্রাকৃতিকভাবেই কাজ করতে শুরু করে এবং অভিজ্ঞতা থেকে অর্জিত স্মৃতি জমা রেখে পরবর্তীতে সেখান থেকে শিক্ষা গ্রহণ করে স্বয়ংক্রিয়ভাবে সিদ্ধান্ত গ্রহণ করতে পারে – যন্ত্রের মধ্যেও সেরকম ক্ষমতা তৈরি করার লক্ষ্যে আজ থেকে ৭৫ বছর আগে শুরু হয়েছে যন্ত্রকে শেখানোর প্রক্রিয়া – মেশিন লার্নিং। যদিও সেই ১৯৫০-এর দশকের বিজ্ঞানীদের ধারণাও ছিল না যে কম্পিউটার এরকম সহজ হয়ে মানুষের হাতে হাতে ঘুরবে – তবুও সেসময় তাত্ত্বিক গবেষণা শুরু করে দিয়েছিলেন বিজ্ঞানীরা – কীভাবে কৃত্রিম বুদ্ধিমত্তার সাহায্যে যন্ত্রের “মগজ” তৈরি করা যায়।

এখন এই একবিংশ শতাব্দীর সিকিভাগ অতিক্রান্ত হবার আগেই আমাদের দৈনন্দিন কাজকর্ম পরিচালিত হচ্ছে কৃত্রিম বুদ্ধিমত্তা ও মেশিন লার্নিং-এর দ্বারা। এখন পৃথিবীতে আটশ কোটি মানুষের জন্য দুই হাজার কোটিরও বেশি স্মার্ট ডিভাইস চালু আছে। আগামী বছরের মধ্যে এই সংখ্যা তিন হাজার কোটি ছাড়িয়ে যাবে। প্রতিদিন গড়ে প্রায় ৪৬৫ হেক্সাবাইট (৪৬৫ মিলিয়ন টেরাবাইট) ডেটা তৈরি হচ্ছে এই যন্ত্রগুলি থেকে। এই বিপুল পরিমাণ ডেটা সংরক্ষণ করে সেগুলি বিশ্লেষণ করার পর সঠিক সিদ্ধান্ত নেয়া মানুষের পক্ষে ক্রমেই অসম্ভব হয়ে দাঁড়াচ্ছে। কিন্তু মানুষের পক্ষে অসম্ভব কাজগুলি অত্যন্ত দক্ষতার সাথে সামলাতে কাজে লেগে গেছে কৃত্রিম বুদ্ধিমত্তাসম্পন্ন অসংখ্য যন্ত্র – যা এখন আমাদের যাতায়াতব্যবস্থা, অর্থনীতি, স্বাস্থ্য, শিক্ষা, ব্যবসা-বাণিজ্য, এমন কি রাজনীতিও সামলাচ্ছে।

এখন প্রশ্ন হচ্ছে কম্পিউটার কীভাবে এসব করছে? কীভাবে এক কম্পিউটার আরেক কম্পিউটারের সাথে নেটওয়ার্ক তৈরি করছে, কীভাবে এক ভাষা থেকে অন্য ভাষায় রূপান্তরিত হচ্ছে, কীভাবে ডেটা থেকে ছবি তৈরি করছে? কী সেই মৌলিক প্রযুক্তি – যার ফলে আর্টফিশিয়াল ইন্টেলিজেন্স এবং মেশিন লার্নিং সম্ভব হচ্ছে? এবছরের পদার্থবিজ্ঞানের নোবেল পুরষ্কার সেই প্রযুক্তিকে সম্মান দিয়েছে। কৃত্রিম বুদ্ধিমত্তা ও মেশিন লার্নিং-এর মতো দুনিয়া বদলে দেওয়া প্রযুক্তির উদ্ভাবনে মৌলিক অবদান রেখেছেন এরকম দুজন বিজ্ঞানী – প্রিন্সটন বিশ্ববিদ্যালয়ের অধ্যাপক জন হপফিল্ড এবং টরন্টো বিশ্ববিদ্যালয়ের অধ্যাপক জেফরি হিনটনকে ২০২৪ সালের পদার্থবিজ্ঞানে নোবেল পুরষ্কার দেয়া হয়েছে।


জন হপফিল্ড


জন জোসেফ হপফিল্ডের জন্ম ১৯৩৩ সালের ১৫ জুলাই আমেরিকার শিকাগো শহরে। তাঁর বাবার নামও ছিল জন হপফিল্ড। সিনিয়র জন হপফিল্ডও ছিলেন পদার্থবিজ্ঞানের অধ্যাপক। পোলান্ড থেকে তিনি ছোটবেলাতেই চলে এসেছিলেন আমেরিকায়। পদার্থবিজ্ঞানের অধ্যাপকের সন্তান হবার সুবাদে পদার্থবিজ্ঞানের প্রতি আগ্রহ জন্মেছিল জন হপফিল্ডের। ১৯৫৪ সালে ফিজিক্স মেজর নিয়ে তিনি পেনসিলভেনিয়ার সোয়ার্থমোর কলেজ থেকে বিএ পাস করে কর্নেল ইউনিভার্সিটির ফিজিক্স ডিপার্টমেন্ট থেকে তত্ত্বীয় পদার্থবিজ্ঞানে পিএইচডি করেন ১৯৫৮ সালে। তাঁর পিএইচডির গবেষণাক্ষেত্র ছিল সলিড স্টেট ফিজিক্স। তাঁর পিএইচডি থিসিসে তিনি একটি নতুন কোয়ান্টাম মেকানিক্যাল তত্ত্ব প্রতিষ্ঠা করেন – যা পরবর্তীতে তাঁর নামে ‘হপফিল্ড ডাইইলেকট্রিক’ মডেল হিসেবে পরিচিতি পায়।

পিএইচডি অর্জনের পর ১৯৫৮ সালেই তিনি যোগ দেন বেল ল্যাবরেটরিতে। সেখানে হিমোগ্লোবিনের গঠন আবিষ্কারের জন্য গবেষণা করছিল যে গ্রুপ, সেই গ্রুপে তত্ত্বীয় পদার্থবিজ্ঞানী হিসেবে কাজ শুরু করেন তিনি। ১৯৬১ পর্যন্ত সেখানে কাজ করার সময় তিনি জীববিজ্ঞানে – বিশেষ করে ফিজিওলজিতে পদার্থবিজ্ঞানের তাত্ত্বিক প্রয়োগের সম্ভাবনা খুঁজে পান। ১৯৬১ সালে তিনি ইউনিভার্সিটি অব ক্যালিফোর্নিয়া বার্কলের পদার্থবিজ্ঞান বিভাগে যোগ দেন কন্ডেন্সড ম্যাটার ফিজিক্স পড়ানো ও গবেষণায়। ১৯৬৪ সালে তিনি চলে যান প্রিন্সটন ইউনিভার্সিটির ফিজিক্স ডিপার্টমেন্টে। ১৯৮০ সাল পর্যন্ত তিনি সেখানে ছিলেন।

প্রিন্সটনে তিনি কন্ডেন্সড ম্যাটার ফিজিক্সের গবেষণার পাশাপাশি শারীরবিজ্ঞানেও গুরুত্বপূর্ণ অবদান রাখেন। কন্ডেন্সড ম্যাটার ফিজিক্সের গবেষণায় অবদানের জন্য ১৯৬৯ সালে তিনি ‘অলিভার বার্কলে পুরষ্কার’ পান।

জীববিজ্ঞান ও শারীরবিজ্ঞানের গবেষণার দিকে তাঁর আগ্রহ জন্মাতে থাকে – শরীরের বিভিন্ন অঙ্গের কার্যাবলি পদার্থবিজ্ঞানের তত্ত্ব দিয়ে ব্যাখ্যা করা যায় দেখে। শরীরের কোষগুলি ক্রমাগত বিভাজিত হচ্ছে। কোষ বিভাজনের সময় কোষের ডিএনএ প্রথমে ঠিক দ্বিগুণ হয়ে যায় – পরে দুই ভাগ হয়ে আলাদা দুটো কোষে পরিণত হয়। এই স্বাভাবিক প্রক্রিয়ায় যদি কোন ত্রুটি থাকে তাহলে কোষ বিভাজনের ফলে ত্রুটিযুক্ত কোষের পরিমাণ বাড়তে থাকে – ফলে শরীরে জিনগত ত্রুটি দেখা দেয়। জন হপফিল্ড এই ত্রুটি শনাক্তকরণের একটি প্রক্রিয়া আবিষ্কার করেন – যার নাম দেন ‘কাইনেটিক প্রুফরিডিং’।

পদার্থবিজ্ঞান থেকে তাঁর গবেষণার আগ্রহ ক্রমেই সরে যাচ্ছিল জীববিজ্ঞান ও রসায়নের দিকে, বিশেষ করে শারীরবিজ্ঞান ও প্রাণরসায়নের দিকে। ১৯৮০ সালে তিনি প্রিন্সটন ইউনিভার্সিটি থেকে চলে গেলেন ক্যালিফোর্নিয়া ইন্সটিটিউট অব টেকনোলজির (ক্যালটেক) কেমিস্ট্রি ও বায়োলজি ডিপার্টমেন্টে। এখানেই ১৯৮২ সালে তিনি প্রকাশ করেন তাঁর প্রথম নিউরোসায়েন্স গবেষণাপত্র ‘নিউরাল নেটওয়ার্ক্স অ্যান্ড ফিজিক্যাল সিস্টেমস উইথ ইমারজেন্ট কালেক্টিভ কম্পিউটেশানাল অ্যাবিলিটিজ’। খুলে যায় কৃত্রিম স্নায়ুতন্ত্র তৈরির পথ। প্রিন্সটনে থাকতে তিনি জৈব অণুর মধ্যে ইলেকট্রন আদান-প্রদানের তত্ত্ব নিয়ে ব্যাপক গবেষণা করেছেন। ক্যালটেকে এসে মস্তিষ্কের নিউরনের ভেতরও ইলেকট্রনিক তথ্য আদান-প্রদানের অনুরূপ একটি কার্যকর তত্ত্ব তিনি দাঁড় করান – যা পরবর্তীতে তাঁর নামে বিখ্যাত হয় – ‘হপফিল্ড নেটওয়ার্ক’ হিসেবে। ক্যালটেকে তিনি প্রতিষ্ঠা করেছেন স্নায়ুতন্ত্রের সাথে কম্পিউটারের যান্ত্রিক সমন্বয়ের পিএইচডি গবেষণার নতুন ক্ষেত্র।

১৯৯৭ সালে ক্যালটেক থেকে আবার ফিরে এলেন প্রিন্সটনে। এবার মলিকিউলার বায়োলজি ডিপার্টমেন্টের প্রফেসর হিসেবে। মূল পিএইচডি গবেষণা পদার্থবিজ্ঞানের হলেও তিনি জীববিজ্ঞানে পদার্থবিজ্ঞানের তত্ত্বের ব্যাপক প্রায়োগিক ক্ষেত্র আবিষ্কার করেছেন। প্রিন্সটন থেকে অবসর নেয়ার পরেও এখনো তিনি এমেরিটাস প্রফেসর হিসেবে প্রিন্সটন বিশ্ববিদ্যালয়ের সাথে যুক্ত আছেন। ২০০১ সাল থেকে ২০২৪ সালের মধ্যে তিনি অনেকগুলি গবেষণা পুরষ্কার পেয়েছেন। ২০০১ সালে পেয়েছেন ডিরাক মেডেল, ২০০২ সালে হ্যারোল্ড পেন্ডার অ্যাওয়ার্ড, ২০০৫ সালে আলবার্ট আইনস্টাইন ওয়ার্ল্ড অ্যাওয়ার্ড অব সায়েন্স, ২০১৯ সালে বেঞ্জামিন ফ্রাঙ্কলিন মেডেল, ২০২২ সালে বোলটজম্যান মেডেল এবং এবছর ২০২৪ সালে পেলেন পদার্থবিজ্ঞানের সর্বোচ্চ পুরষ্কার – নোবেল পুরষ্কার।

জন হপফিল্ডের উদ্ভাবিত ‘হপফিল্ড নেটওয়ার্ক’ খুব দক্ষতার সাথে কাজে লাগিয়ে মেশিন লার্নিং-এর পথ সুগম করে এবছর অন্য যে বিজ্ঞানী পদার্থবিজ্ঞানে নোবেল পুরষ্কার পেয়েছেন তিনি টরন্টো বিশ্ববিদ্যালয়ের প্রফেসর জেফরি হিনটন। জেফরি হিনটন ‘আর্টিফিশিয়াল ইন্টেলিজেন্সের গডফাদার’ হিসেবে খ্যাতিমান হয়ে পদার্থবিজ্ঞানের সর্বোচ্চ পুরষ্কার নোবেল পুরষ্কার পেলেও মজার ব্যাপার হলো – তাঁর পদার্থবিজ্ঞানের কোন ডিগ্রি নেই।


জেফরি হিনটন

জেফরি এভারেস্ট হিনটনের জন্ম ইংল্যান্ডের উইম্বলডনে ১৯৪৭ সালের ৬ ডিসেম্বর। তাঁর মধ্যনাম এভারেস্ট এসেছে তাঁর পূর্বপুরুষ জর্জ এভারেস্টের নাম থেকে যাঁর নামে এভারেস্ট পর্বতের নাম দেয়া হয়েছে। ব্রিস্টলের ক্লিফটন কলেজ থেকে উচ্চমাধ্যমিক পর্যায়ের পড়াশোনা শেষ করে জেফরি কেমব্রিজের কিংস কলেজে ভর্তি হলেন স্নাতক পর্যায়ের পড়াশোনা করার জন্য। কিন্তু সুনির্দিষ্ট কোন বিষয়ের প্রতিই আগ্রহ অনুভব করছিলেন না। প্রাকৃতিক বিজ্ঞানের কয়েকটি গুচ্ছ বিষয় – ফিজিক্স, কেমিস্ট্রি, বায়োলজি নিয়ে পড়লেন কিছুদিন। ভালো লাগলো না। ছেড়ে দিয়ে ভর্তি হলেন শিলকলার ইতিহাসে। সেটাও ভালো লাগলো না। কিছুদিন দর্শন শাস্ত্রের ক্লাস করলেন। তাও ভালো লাগলো না। শেষ পর্যন্ত কোনো রকমে পরীক্ষণ মনোবিজ্ঞানে স্নাতক ডিগ্রি শেষ করলেন ১৯৭০ সালে। এর আট বছর পর ১৯৭৭ সালে ইউনিভার্সিটি অব এডিনবরা থেকে আর্টিফিশিয়াল ইন্টেলিজেন্স-এ পিএইচডি ডিগ্রি অর্জন করলেন। তাঁর থিসিসের বিষয় ছিল ‘রিলাক্সেশান অ্যান্ড ইটস রোল ইন ভিশান’।

পিএইচডি করার পর জেফরি হিনটন কিছুদিন সাসেক্স ইউনিভার্সিটিতে পোস্টডক্টরাল গবেষণা করলেন, ইংল্যান্ডের মেডিক্যাল রিসার্চ কাউন্সিলের অ্যাপ্লাইড সাইকোলজি বিভাগেও কাজ করলেন কিছুদিন। কিন্তু ইংল্যান্ডে গবেষণার ফান্ড না থাকাতে চাকরির উদ্দেশ্যে তাঁকে আমেরিকায় পাড়ি দিতে হলো ১৯৮২ সালে। ১৯৮২ থেকে ১৯৮৭ পর্যন্ত তিনি কার্নেগি মেলন ইউনিভার্সিটিতে অধ্যাপনা ও গবেষণা করলেন। ১৯৮২ সালে প্রিন্সটন বিশ্ববিদ্যালয়ে হপফিল্ড নেটওয়ার্ক আবিষ্কার করেছেন প্রফেসর জন হপফিল্ড। জেফরি হিনটন এই আর্টিফিসিয়াল নিউরাল নেটওয়ার্ক কাজে লাগালেন তাঁর আর্টিফিশিয়াল ইন্টেলিজেন্স-এর গবেষণায়। কৃত্রিম বুদ্ধিমত্তার বিপুল সম্ভাবনার দরজা খুলে গেল। এই সম্ভাবনার সবটুকুকে সামরিক শক্তি অর্জনের কাজে লাগাতে এর গবেষণায় অর্থায়ন করা শুরু করলো আমেরিকান সামরিক বাহিনি।

বিজ্ঞানকে যুদ্ধের কাজে ব্যবহার করার ব্যাপারকে ভীষণ নীতিবিরুদ্ধ বলে বিশ্বাস করেন প্রফেসর হিনটন। তিনি দেখলেন আমেরিকায় থাকলে তাঁকে গবেষণার জন্য সামরিক বাহিনীর অর্থপুষ্ট প্রজেক্টে কাজ করতে হবে। তাই তিনি আমেরিকা থেকে কানাডা চলে যাবার সিদ্ধান্ত নিলেন। ১৯৮৭ সালে তিনি টরন্টো বিশ্ববিদ্যালয়ে কম্পিউটার সায়েন্স বিভাগে প্রফেসর হিসেবে যোগ দিলেন। সেই থেকে এখনো তিনি টরন্টো বিশ্ববিদ্যালয়ের সাথে সংযুক্ত। পাশাপাশি ২০১৩ সাল থেকে ২০২৩ সাল পর্যন্ত তিনি গুগলের বিশেষ মর্যাদাসম্পন্ন গবেষক হিসেবে কাজ করেছেন গুগলের ডিপ-লার্নিং প্রকল্পে – বিশেষ করে ইমেজ রিকগনিশান এবং ন্যাচারাল ল্যাংগুয়েজ প্রসেসিং ডেপেলপ করার কাজে। কিন্তু তিনি যখন দেখলেন মানুষের চেয়েও ক্রমশ শক্তিমান হয়ে উঠছে কৃত্রিম বুদ্ধিমত্তা, এবং এখনো কঠোর আইন তৈরি হয়নি মেশিনের হাত থেকে মানুষের চিন্তার স্বাধীনতা রক্ষার - ২০২৩ সালের মে মাসে তিনি গুগল থেকে পদত্যাগ করলেন। কৃত্রিম বুদ্ধিমত্তার উত্থান যদিও তাঁর হাত ধরে হয়েছে, যদিও তিনি ‘আর্টিফিশিয়াল ইন্টেলিজেন্সের গডফাদার’, মেশিনের কৃত্রিম বুদ্ধিমত্তা ভবিষ্যতে মানুষের বুদ্ধিমত্তাকেও টেক্কা দিতে পারে বলে সন্দেহ করছেন তিনি। তাঁর গবেষণার সর্বোচ্চ স্বীকৃতি নোবেল পুরষ্কার পাবার পরেও তাঁর নীতিগত অবস্থানের বদল হয়নি।

নোবেল পুরষ্কারের আগে আরো অনেক পুরষ্কার পেয়েছেন প্রফেসর হিন্টন। ২০০১ সালে পেয়েছেন রুমেলহার্ট প্রাইজ, ২০১৪ সালে পেয়েছেন ফ্র্যাংক রোজেনব্লাট পুরষ্কার, ২০১৬ সালে পেয়েছেন জেমস ক্লার্ক ম্যাক্সওয়েল মেডেল, ২০১৮ সালে পেয়েছেন টুরিং পুরষ্কার, ২০২১ সালে পেয়েছেন ডিকসন পুরষ্কার, ২০২২ সালে স্পেন সরকারের প্রিন্সেস অব অ্যাস্ট্রিয়াস পুরষ্কার। রয়েল সোসাইটির ফেলো হয়েছিলেন ১৯৯৮ সালে। ২০১৮ সালে পেয়েছেন কানাডা সরকারের অর্ডার অব কানাডা পুরষ্কার।

কৃত্রিম বুদ্ধিমত্তা এবং মেশিন লার্নিং-এর পুরো ব্যাপারটাকেই আমরা অনেকে কম্পিউটার প্রযুক্তিবিদদের ব্যাপার বলে ধরে নিয়ে থাকি। তাই বিশুদ্ধ পদার্থবিজ্ঞানের অনেকেই মনে করছেন এবারের পদার্থবিজ্ঞানের পুরষ্কারটিতে সরাসরি পদার্থবিজ্ঞানের অবদান কম। কিন্তু পদার্থবিজ্ঞানের নোবেল কমিটি  কৃত্রিম বুদ্ধিমত্তা এবং মেশিন লার্নিং-এর বর্তমান পর্যায়ে আসার পেছনে যে মূল আবিষ্কার কাজ করেছে তা যে মৌলিক পদার্থবিজ্ঞান থেকে উদ্ভূত হয়েছে তাকেই সম্মান করেছে।

একথা সত্য যে কম্পিউটার প্রযুক্তির এত অভাবনীয় উন্নতি না হলে যন্ত্রের ভেতর চিন্তাশক্তি ঢুকিয়ে দেয়া সম্ভব হতো না। কিন্তু এই প্রক্রিয়াটি দীর্ঘদিনের গবেষণা এবং প্রযুক্তিগত উৎকর্ষের ফসল।

মানুষের মস্তিষ্কের মতো কাজ করতে পারবে এরকম কৃত্রিম যান্ত্রিক মস্তিষ্ক তৈরির ইচ্ছে আরো অনেক আগে থেকেই বিজ্ঞানীদের মধ্যে ঘুরপাক খাচ্ছিল। মস্তিষ্কের নিউরাল নেটওয়ার্কের মতো করে আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক তৈরি করা হয়েছে কম্পিউটারের জন্য। এটা করতে গিয়ে অনেকগুলি ধাপ অতিক্রম করতে হয়েছে বিজ্ঞানীদের। ১৯৪০-এর দশকে কানাডার স্নায়ুবিজ্ঞানী ডোনাল্ড হেব তত্ত্ব দিয়েছিলেন আমাদের মস্তিষ্কের নিউরন নেটওয়ার্ক বাড়িয়ে কমিয়ে আমাদের শিখন ক্ষমতা বাড়ানো-কমানো যায়। এই তত্ত্বকে কম্পিউটার বিজ্ঞানীরা কাজে লাগিয়েছেন আর্টিফিশিয়াল নিউরাল নেটওয়ার্ক বা কৃত্রিম স্নায়ুতন্ত্র তৈরির ক্ষেত্রে।

আমাদের স্নায়ুতন্ত্র যেমন নিউরন দ্বারা তৈরি, কৃত্রিম স্নায়ুতন্ত্র তৈরি হয় ইলেকট্রনিক নোডের মাধ্যমে। এই নোডগুলি একে অন্যের সাথে ইলেকট্রনিক পদ্ধতিতে সংযুক্ত থাকে। শেখার ক্ষেত্রে যেভাবে আমাদের স্নায়ুর সংযোগগুলির উদ্দীপনার হ্রাসবৃদ্ধি ঘটে – কৃত্রিম নোডগুলির সংযোগকেও প্রয়োজনীয় ট্রেনিং – বা কোডের মাধ্যমে বাড়ানো কিংবা কমানো যায়। ফলে আমাদের মস্তিষ্ক যেভাবে নতুন কিছু শেখে এবং মনে রাখে, কৃত্রিম স্নায়ুতন্ত্রও সেভাবে নতুন কিছু শিখতে পারে এবং স্মৃতিতে ধরে রাখতে পারে।

তাত্ত্বিকভাবে এরকম সম্ভাবনা দেখলেও বিজ্ঞানীরা ১৯৮০র দশকের আগপর্যন্ত বিশ্বাস করতে পারেননি যে বাস্তবে এরকম কিছু ঘটবে। ১৯৮২ সালে জন হপফিল্ড যখন তাঁর ‘হপফিল্ড নেটওয়ার্ক’ উদ্ভাবন করলেন – দেখা গেল কৃত্রিম স্নায়ুতন্ত্র মস্তিষ্কের নিউরনের মতোই কাজ করতে পারে। তিনি তাঁর নেটওয়ার্ক তৈরি করেছিলেন তাঁর সলিড স্টেট ফিজিক্সের জ্ঞান কাজে লাগিয়ে। চৌম্বকীয় পদার্থের পারমাণবিক ঘূর্ণন বা অ্যাটমিক  স্পিন পদার্থের পরমাণুকে ক্ষুদ্র ক্ষুদ্র চুম্বকে পরিণত করতে পারে। একটি চুম্বকের ঘূর্ণন তার পার্শবর্তী চুম্বকের ঘূর্ণনকে প্রভাবিত করে। এভাবে সঠিক সংযোগ (ট্রেনিং) এর মাধ্যমে নির্দিষ্ট সংখ্যক নোডের কার্যকলাপ নিয়ন্ত্রণ করা যায়।


হপফিল্ড নেটওয়ার্ক


হপফিল্ড নেটওয়ার্কে নির্দিষ্ট সংখ্যক নোড থাকে যারা একে অপরের সাথে যুক্ত। নোডগুলির মধ্যে ইনপুট তথ্য হিসেবে একটি ছবি দেয়া হয় – যেখানে প্রতিটি নোড একটি নির্দিষ্ট মান 0 অথবা 1 ধরে রাখতে পারে। এখানে তথ্য ধরে নেয়া যায় 0 যদি কালো হয়,1 হবে সাদা – যেভাবে বাইনারি পদ্ধতি কাজ করে। নেটওয়ার্কের সংযোগ তখন ঠিক করে নেয়া হয় স্পিন-এনার্জির হিসেবের ভিত্তিতে। এখন আরেকটি প্যাটার্নের ছবি যদি এই নেটওয়ার্কে যোগ করা হয় – তখন আগের ছবির তথ্যের সাথে এই নতুন প্যাটার্ন মিলিয়ে দেখে। যদি কোন একটা নোডের মানে তারতম্য দেখা দেয় – তখন নোডের রং বদলে যায়। এভাবে নতুন প্যাটার্নটি পুরনো প্যাটার্নের সাথে মিলিয়ে নেয়া যায়। এভাবে নেটওয়ার্কে অনেকগুলি ছবি একের পর এক ঢুকিয়ে সবগুলিকে একসাথে রেখে দেয়া যায়। নেটওয়ার্কের সংযুক্ত স্মৃতি বা এসোসিয়েটেড মেমোরি হিসেবে কাজ করতে পারে এই তথ্যগুলি। অসম্পূর্ণ তথ্য বা আংশিক তথ্য দিলেও এই নেটওয়ার্ক সংরক্ষিত স্মৃতি থেকে পুরো তথ্য বের করে দিতে পারে।

একই রকম ছবির সাথে ছবির মিল খুঁজে বের করতে পারা আর ছবি চিনতে পারার মধ্যে পার্থক্য আছে। শিশুরা যেভাবে নতুন জিনিস দেখতে দেখতে মনে রাখে এবং পরবর্তীতে আবার দেখলে মনে করে বলতে পারে কোন্‌টা কী, সেই পদ্ধতিতে কৃত্রিম স্নায়ুতন্ত্রকে কি শেখানোর ব্যবস্থা করা যায়? এই ভাবনা থেকে স্ট্যাটিস্টিক্যাল ফিজিক্সের তত্ত্ব কাজে লাগিয়ে জেফরি হন্টন উদ্ভাবন করেছিলেন বোল্টজম্যান মেশিন।

জন হপফিল্ড যখন তাঁর নিউরাল নেটওয়ার্কের অ্যাসোসিয়েটেড মেমোরি সংক্রান্ত গবেষণাপত্র প্রকাশ করলেন, জেফরি হনটন সেই সময় ছিলেন কার্নেগি মেলন ইউনিভার্সিটিতে। তিনি হপফিল্ড নেটওয়ার্কে স্ট্যাটিস্টিক্যাল ফিজিক্স প্রয়োগ করার কথা ভাবলেন। গ্যাসের অণুগুলির প্রত্যেকটির ধর্ম যেমন আলাদা আলাদাভাবে পরীক্ষা না করেও কিছু সামগ্রিক ধর্ম পরীক্ষা করে গ্যাসের সামগ্রিক পরিবর্তন শনাক্ত করা যায় – যেমন গ্যাসের চাপ কিংবা তাপ; সেরকম কোন সূত্র প্রয়োগ কি করা যায় নিউরাল নেটওয়ার্কের মেমোরির ক্ষেত্রে? স্ট্যাটিস্টিক্যাল ফিজিক্সে বোল্‌টজম্যান সমীকরণ প্রয়োগ করে হিনটন একটি নিউরাল নেটওয়ার্ক তৈরি করে নাম দিলেন ‘বোল্টজম্যান মেশিন’। ১৯৮৫ সালে এসংক্রান্ত গবেষণাপত্র প্রকাশিত হলো।


বোল্টজম্যান মেশিন

বোল্‌টজম্যান মেশিন হলো মেশিন লার্নিং-এর একেবারে প্রাথমিক মডেল। এতে শুরুতে দুই ধরনের নোড থাকে। এক ধরনের নোডে তথ্য দেয়া হয় – যাদেরকে বলা হয় দৃশ্যমান নোড। অন্য ধরনের নোড একটি অদৃশ্য স্তর তৈরি করে। অদৃশ্য নোডগুলিও পুরো নেটওয়ার্কের অংশ। দৃশ্যমান নোডগুলির মধ্যে যতভাবে সংযোগ ঘটানো সম্ভব সবগুলি একের পর এক স্মৃতিতে জমা করে দেয়া হয়। কী কী সংযোগ সম্ভব নয়, তার একটা শিখিয়ে দিলে (স্মৃতিতে রেখে দিলে) বাকি অসম্ভব সংযোগ গুলি এই মেশিন শিখে নিতে পারে। বোল্টজম্যান মেশিন হলো সম্ভাব্য সব প্যাটার্ন খুঁজে বের করার নেটওয়ার্ক। আমরা যেমন পরিচিত কারো চেহারার সাথে অপরিচিত কোন মানুষের চেহারার কিছুটা সাদৃশ্য দেখলেও চিনতে পারি – সেভাবে হিনটনের নেটওয়ার্ক অনেকগুলি প্যাটার্নের ভেতর থেকে সাদৃশ্য-অসাদৃশ্য খুঁজে বের করতে পারে।

সেই ১৯৮২ থেকে ১৯৮৫ তে যে কৃত্রিম নিউরাল নেটওয়ার্ক ও মেশিন লার্নিং পদ্ধতির সূচনা করেছিলেন প্রফেসর জন হপফিল্ড ও জেফরি হিনটন – তা বিপুল বিপ্লব ঘটিয়ে দেয় ২০১০ সালের পর থেকে। এখন প্রতিদিন যে পরিমাণ ডেটা তৈরি হচ্ছে তার মধ্যে থেকে অনেক ডেটা ব্যবহার করা হচ্ছে মেশিন লার্নিং-এ। কম্পিউটারগুলি প্রতিদিনই অনেকগুণ শিক্ষিত হচ্ছে আগেরদিনের চেয়ে। ১৯৮২ সালে হপফিল্ড তাঁর নেটওয়ার্কে মাত্র তিরিশটি নোড ব্যবহার করেছিলেন। সবগুলি নোড একে অপরের সাথে সংযুক্ত হলে মোট ৪৩৫টি সংযোগ হয়। এই নোডগুলির বিভিন্ন মান মিলিয়ে প্রায় পাঁচ শ’র মতো প্যারামিটারের হিসেব রাখতে গিয়েই তাঁর সেই সময়ের কম্পিউটার হাঁপিয়ে উঠেছিল। তিনি মাত্র একশটি নোডের একটি নেটওয়ার্ক তৈরি করতে গিয়েও পারেননি কম্পিউটারের ক্ষমতার সীমাবদ্ধতার কারণে। আজকের নিউরাল নেটওয়ার্কগুলি ট্রিলিয়ন ট্রিলিয়ন প্যারামিটার সামাল দিচ্ছে।

২০০৬ সালে প্রফেসর হিনটন উদ্ভাবন করেছেন ডিপ লার্নিং ও ডিপ বিলিফ নেটওয়ার্ক। বহুমাত্রিক নিউরাল নেটওয়ার্ক-কে প্রশিক্ষণ দিয়ে মেশিন-লার্নিং বহুগুণ শক্তিশালী করার ব্যাপারে অবদান রেখেছেন বলেই প্রফেসর হিনটনকে ‘আর্টিফিশিয়াল ইন্টেলিজেন্স-এর গডফাদার’ বলেন সবাই।

জন হপফিল্ড এবং জেফরি হিনটনের দেখানো পথ অনুসরণ করে এখন আমাদের হাতে এসে গেছে চ্যাটজিপিটির মতো ট্রান্সফর্মার মডেল। এখন আমাদের প্রযুক্তির অনেকটাই স্বয়ংক্রিয়। কৃত্রিম বুদ্ধিমত্তা আমাদের জীবনকে অনেকটাই সহজ করে দিচ্ছে।

কিন্তু একই সাথে পরোক্ষভাবে আমাদের চিন্তাভাবনাকে নিয়ন্ত্রণ করতেও শুরু করেছে। এখন একটা ম্যাসেজ টাইপ করতে গেলেও শব্দের জোগান দিচ্ছে মেশিন – আমরা বেশিরভাগ সময় সেই শব্দগুলিই ব্যবহার করছি। কিন্তু অন্যদিকে যেসব গবেষণা আমাদের পক্ষে মেশিনের সাহায্য ছাড়া কিছুতেই সম্ভব নয়, যেমন মহাবিশ্বের আন্তনাক্ষত্রিক বিপুল আয়তনের ডেটা বিশ্লেষণ, কৃত্রিম বুদ্ধিমত্তার মাধ্যমে করে ফেলার দিকে এগোচ্ছেন বিজ্ঞানীরা। এবছরের পদার্থবিজ্ঞানের নোবেল পুরষ্কার অদূর ভবিষ্যতে জীবপদার্থবিজ্ঞানের গবেষণাকে আরো এগিয়ে নিয়ে যাবে। কোয়ান্টাম কম্পিউটার পুরোমাত্রায় কাজ শুরু করলে মেশিন লার্নিং অন্যমাত্রা পাবে তাতে কোন সন্দেহ নেই। তখন হয়তো আমরা ক্যান্সারের মতো রোগের সঠিক কারণ খুঁজে বের করে তাকে প্রতিরোধ করতেও সক্ষম হবো।

 

তথ্যসূত্র

১। www.nobelprize.org

২। মাইকেল নেগনেভিতস্কি, আর্টিফিশিয়াল ইন্টেলিজেন্স এ গাইড টু ইন্টেলিজেন্ট সিস্টেমস, এডিসন-ওয়েসলি, ইংল্যান্ড ২০০৫।

৩। সায়েন্টিফিক অ্যামেরিকান, ২৫ জুন ২০২৪।

৪। ইথেম আলপ্যায়দিন, মেশিন লার্নিং, এম আই টি প্রেস, কেমব্রিজ, ২০২১।

৫। মার্গারেট বোডেন, আর্টিফিশিয়াল ইন্টেলিজেন্স অ্যা ভেরি শর্ট ইন্ট্রোডাকশান, অক্সফোর্ড ইউনিভার্সিটি প্রেস, ২০১৮।


============

বিজ্ঞানচিন্তা অক্টোবর ২০২৪ সংখ্যায় প্রকাশিত



Thursday, 21 December 2023

অ্যাটোসেকেন্ড পদার্থবিজ্ঞান

 


পূরবীর শেষ বসন্ত কবিতায় রবীন্দ্রনাথ লিখেছেন, “সময় রয়েছে বাকি; সময়েরে দিতে ফাঁকি, ভাবনা রেখো না মনে কোনো।“ কিন্তু কবি যতই নিশ্চিন্ত আশ্বাসের বাণী দিন, ভাবনা রয়ে যায়। বিশেষ করে পদার্থবিজ্ঞানে সবচেয়ে বড় ভাবনার বিষয় হলো – সময়। এখানে এখন ক্ষুদ্রতম সময়েরেও ফাঁকি দেয়া দিনে দিনে অসম্ভব হয়ে উঠছে। ব্রিফ হিস্ট্রি অব টাইম বইতে বিজ্ঞানী স্টিফেন হকিং দেখিয়েছেন মহাবিশ্বের বৈজ্ঞানিক বিবর্তন আর সময়ের ইতিহাস সমতুল। সময় এবং স্থানের পারস্পরিক জটিল সম্পর্কের ভেতর থেকে আইনস্টাইন বের করে এনেছেন আপেক্ষিকতার তত্ত্ব – যা বদলে দিয়েছে মহাবিশ্ব সম্পর্কে আমাদের বৈজ্ঞানিক দৃষ্টিভঙ্গি। সময় সম্পর্কে আমরা যতই জানছি – ততই জটিল হয়ে যাচ্ছে সময়ের সংজ্ঞা, সময়ের সমীকরণ। 

সময়ের ধারণা কীভাবে ধরা দেয় আমাদের মনে? আমরা আমাদের পারিপার্শ্বিক ঘটনার পরিবর্তনের সাথে তুলনা করে সময় বোঝার চেষ্টা করি। যেমন হৃৎপিন্ডের একটি স্পন্দনের সময় – মোটামুটি এক সেকেন্ড ধরা যায়। দ্রুত ঘটে যাওয়া ঘটনার বর্ণনায় আমরা অনেক সময় বলে থাকি এক নিমেষেই ঘটে গেল সব। বাংলায় এই নিমেষ হলো চোখের পলক ফেলতে যতটুকু সময় লাগে। চোখের পলক ফেলতে গড়ে একশ থেকে দেড়শ মিলিসেকেন্ড সময় লাগে, অর্থাৎ ধরা যায় এক সেকেন্ডের দশ ভাগের এক ভাগ সময় লাগে। নিমেষের হিসেবে ধরলেও এক সেকেন্ড অনেক লম্বা সময়। 

কোনো একটি ঘটনা ঘটতে কতক্ষণ সময় লাগে তা স্বাভাবিক নিয়মে হিসেব করতে হলে আমাদের ঘটনাটা ঘটতে দেখা চাই। আবার যেকোনো কিছু সরাসরি দেখার জন্য আমাদের আলোর দরকার। কিন্তু আলো থাকলে এবং আমাদের চোখের সামনে ঘটনা ঘটলেই কি আমরা দেখতে পাই সবকিছু? না, পাই না। কারণ আমাদের চোখের অনেক সীমাবদ্ধতা আছে। আমাদের চোখের স্বাভাবিক রেজ্যুলেশান বা সূক্ষ্মদর্শনের ক্ষমতা মাত্র একশ মাইক্রোমিটার। অর্থাৎ কোন বস্তু যদি এক মিলিমিটারের দশ ভাগের এক ভাগের চেয়ে ছোট হয়, স্বাভাবিক চোখে আমরা তা দেখতে পাবো না। 

আবার দেখার জন্য যে আলো লাগে – সেই আলোর তরঙ্গের খুব সামান্য অংশই – চার শ ন্যানোমিটার থেকে সাত শ ন্যানোমিটার পর্যন্ত তরঙ্গদৈর্ঘ্যের আলো – আমাদের চোখের রেটিনার কোষের সাথে মিথষ্ক্রিয়া করতে পারে। তাই চারশ ন্যানোমিটারের কম বা সাত শ ন্যানোমিটারের বেশি তরঙ্গদৈর্ঘ্যের  আলো আমরা দেখতে পাই না। বাতাস ভরযুক্ত অক্সিজেন, নাইট্রোজেনসহ আরো কয়েকটি গ্যাসের মিশ্রণ – কিন্তু আমরা বাতাস দেখতে পাই না। রাসায়নিক কিংবা ভৌতবিক্রিয়া অনবরত ঘটছে আমরা জানি, কিন্তু সরাসরি তা দেখতে পাই না। বলা যায় বস্তুজগতের বেশিরভাগ সূক্ষ্ম ঘটনা, দ্রুততম সময়ে ঘটে যাওয়া ঘটনা প্রত্যক্ষ করার ক্ষমতা আমাদের নেই। 

কিন্তু সরাসরি দেখতে না পারলে কী হবে, পরোক্ষভাবে সূক্ষ্মাতিসূক্ষ্ম ঘটনাগুলি দেখার অনেক পদ্ধতি বিজ্ঞানীরা আবিষ্কার করে ফেলেছেন। ২০২৩ সালের পদার্থবিজ্ঞানে নোবেল পুরষ্কার দেয়া হয়েছে এমনই আশ্চর্যজনক ক্ষুদ্রতম সময়ে ঘটা ঘটনাগুলি দেখার পদ্ধতি আবিষ্কারের জন্য – যার নাম দেয়া হয়েছে অ্যাটোসেকেন্ড ফিজিক্স। এই অ্যাটোসেকেন্ড ফিজিক্স দ্রুততম সময়ে ঘটা ইলেকট্রনের কাজকর্ম দেখারও সুযোগ করে দিচ্ছে। এটা এমনই এক আশ্চর্যজনক ফিজিক্স – যা বুঝতে হলে আমাদের ঠান্ডা মাথায় ভাবতে হবে অনেককিছু। 

শুরুতেই দেখা যাক – অ্যাটোসেকেন্ড বলতে কতটুকু সময় বোঝায়। এক অ্যাটোসেকেন্ড হলো ১০-১৮ সেকেন্ড। অর্থাৎ এক সেকেন্ডকে একশ কোটি ভাগ করে তার এক ভাগকে আবার এক শ কোটি ভাগ করলে এক ভাগের যে সময় হবে সেটা। আলো এক সেকেন্ডে প্রায় তিন লক্ষ কিলোমিটার যেতে পারে। অটোসেকেন্ডের হিসেব করলে এক মিটার দূরত্ব অতিক্রম করতে আলোর সময় লাগবে প্রায় তিনশ ত্রিশ কোটি অ্যাটোসেকেন্ড।  অ্যাটোসেকেন্ড ফিজিক্স হলো অ্যাটোসেকেন্ড স্কেলের পরিমাপের মতো সংক্ষিপ্ত সময়ের জন্য আলোর স্পন্দন তৈরি করার পদার্থবিজ্ঞান – যে স্পন্দনের মাধ্যমে সেই সূক্ষ্মতম স্কেলে পরিমাপযোগ্য সময়ের ভেতর ঘটে যাওয়া ঘটনাবলি দেখা সম্ভব।

দ্রুততম সময়ে ঘটা ঘটনাগুলি আমরা কীভাবে দেখতে পারি? যেমন ক্রিকেট খেলার কথা ধরা যাক। একজন ফাস্টবোলার যখন বল করেন, তখন ক্যামেরাম্যানরা সেই বল ব্যাটারের ব্যাটে লাগার মুহূর্তের ছবি তোলার জন্য লম্বা লম্বা লেন্স তাক করে বসে থাকেন। তখন তাদের ক্যামেরার শাটার স্পিড এমনভাবে  সেট করা থাকে যেন দ্রুততম সময়ে ঘটনাটির ছবি তোলা যায়। ঘটনাটি যে বেগে ঘটবে, শাটারের বেগ হতে হবে তার চেয়ে বেশি। নইলে ছবি ঝাপসা হয়ে যাবে। শাটারের বেগ বেশি হবার অর্থ হলো ক্যামেরার ডায়াফ্রাম খোলা হবে খুব কম সময়ের জন্য। প্রচন্ড গতিশীল বস্তুর উপর তখন খুব কম সময়ের জন্য আলো পড়ে সেই সময়টিকে স্থির করে ধরে নেবে ক্যামেরায়। 

কিন্তু ক্রিকেট বলের গতির চেয়ে কোটি কোটি গুণ দ্রুত ঘটে পরমাণুর ইলেকট্রনের কাজকর্ম। ইলেকট্রনের কক্ষপথ কিংবা শক্তিস্তরের পরিবর্তন ঘটতে সময় নেয় মাত্র কয়েকশ অ্যাটোসেকেন্ড। অ্যাটোসেকেন্ড ফিজিক্স-এর প্রয়োগে ইলেকট্রনের দ্রুততম গতিবিধি পর্যবেক্ষণ করার সম্ভাবনার দরজা খোলার চেষ্টা করে চলেছেন যে ক’জন বিজ্ঞানী গত প্রায় চল্লিশ বছর ধরে – তাঁদেরই তিনজন অগ্রনায়ককে এবছর পদার্থবিজ্ঞানের নোবেল পুরষ্কারে ভূষিত করা হয়েছে। এই তিনজন নোবেলজয়ী পদার্থবিজ্ঞানী হলেন – অ্যান লুইলিয়ের, ফেরেঙ্ক ক্রাউজ এবং পিয়ের আগস্তিনি। 


 পিয়ের আগস্তিনি, ফেরেঙ্ক ক্রাউজ এবং অ্যান লুইলিয়ের


নোবেলজয়ী বিজ্ঞানীদের মধ্যে নারী বিজ্ঞানীর সংখ্যা এখনো পুরুষদের তুলনায় অনেক কম। ১৯০১ থেকে ২০২৩ সাল পর্যন্ত – চিকিৎসাবিজ্ঞানে নোবেল পুরষ্কার পেয়েছেন মাত্র তেরো জন নারী, রসায়নে মাত্র আট জন, এবং পদার্থবিজ্ঞানে সবচেয়ে কম – মাত্র পাঁচজন। ১৯০৩ সালে মেরি কুরির পদার্থবিজ্ঞানে নোবেল পুরষ্কার পাবার পরবর্তী ষাট বছর আর কোন নারী পদার্থবিজ্ঞানে নোবেল পুরষ্কার পাননি। ১৯৬৩ সালে মারিয়া গোয়েপার্ট মেয়ার পদার্থবিজ্ঞানে নোবেল পুরষ্কার জয়ী দ্বিতীয় বিজ্ঞানী। এরপর আবার পঞ্চান্ন বছরের দীর্ঘ বিরতি। অবশেষে ২০১৮ সাল থেকে এবছর পর্যন্ত আরো তিনজন নারী পদার্থবিজ্ঞানী নোবেল পুরষ্কার পেয়েছেন। অ্যাটোসেকেন্ড ফিজিক্সের অগ্রনায়ক প্রফেসর অ্যান লুইলিয়ার নোবেলজয়ী পঞ্চম নারী পদার্থবিজ্ঞানী। এবছরের পদার্থবিজ্ঞানে নোবেল পুরষ্কার সেহিসেবেও অনন্য মাত্রা পেয়েছে। 

অ্যান লুইলিয়ার (Anne L’Huillier)-এর জন্ম ১৯৫৮ সালের ১৬ আগস্ট ফ্রান্সের প্যারিসে। প্যারিসের ইকোল নরমাল সুপেরিয়র থেকে পদার্থবিজ্ঞানে বিএ পাস করার পর পিয়ের অ্যান্ড মেরি কুরি ইউনিভার্সিটি থেকে গণিত ও তত্ত্বীয় পদার্থবিজ্ঞানে ডাবল মাস্টার্স ডিগ্রি অর্জন করেন। এরপর তিনি একই বিশ্ববিদ্যালয় থেকে পিএইচডি ডিগ্রি অর্জন করেন পরীক্ষণ পদার্থবিজ্ঞানে ১৯৮৬ সালে। তাঁর থিসিসের শিরোনাম ছিল ‘মাল্টিফোটন অ্যান্ড মাল্টিইলেকট্রন আয়নাইজেশান’। উচ্চ তীব্রতার লেজার রশ্মি প্রয়োগে একাধিক ফোটন এবং ইলেকট্রনের আয়নাইজেশান সংক্রান্ত গবেষণা করেন তিনি তাঁর পিএইচডির সময় – যা পরবর্তীতে আরো গভীরে গিয়ে তাঁর নোবেল পুরষ্কারের পথ তৈরি করেছিল। 

পিএইচডি করার পর তিনি সুইডেনের গুথেনবার্গের কালমার্স ইন্সটিটিউট অব টেকনোলজিতে পোস্টডক ফেলো হিসেবে যোগ দেন, এবং এর কিছুদিন পর আমেরিকার লস এঞ্জেলেস-এ ইউনিভার্সিটি অব সাউদার্ন ক্যালিফোর্নিয়ায় চলে যান। তবে বেশিদিন ছিলেন না সেখানে। ইতোমধ্যে তিনি ফ্রান্সের অ্যাটমিক এনার্জি কমিশনের অধীনে যে নয়টি গবেষণাকেন্দ্র আছে – তাদের অন্যতম কেন্দ্র স্যাকলে সেন্টারে গবেষক হিসেবে যোগদান করেন। ১৯৯২ সালে তিনি সুইডেনের লুন্ড ইউনিভার্সিটিতে টাইটানিয়াম-স্যাফায়ার সলিড স্টেট লেজার সিস্টেমে কাজ করেন। ওটা ছিল ইওরোপের প্রথম ফেমটোসেকেন্ড পাল্‌স উৎপাদনক্ষম লেজার। ফেমটোসেকেন্ড হলো ১০-১৫ সেকেন্ড, অর্থাৎ এক সেকেন্ডের একশ কোটি ভাগের একভাগ সময়কে আরো দশ লক্ষ ভাগ করলে প্রতি ভাগ সময়ের সমান। ফেমটোসেকেন্ড পাল্‌স হলো ফেমটোসেকেন্ড স্থায়ী আলোর স্পন্দন। লেজারের সাহায্যে এরকম স্পন্দন তৈরি করা শুরু হয়েছিল ১৯৯০র দশকে। ১৯৯৪ সালে অ্যান পাকাপাকিভাবে প্যারিস থেকে সুইডেনে চলে যান লুন্ড ইউনিভার্সিটির লেকচারার হিসেবে। ১৯৯৭ সালেই তিনি লুন্ড ইউনিভার্সিটির প্রফেসর পদে উন্নীত হন। ২০০৪ সালে তিনি সুইডিশ একাডেমি অব সায়েন্সের সদস্যপদ লাভ করেন। ২০০৭ থেকে ২০১৫ পর্যন্ত তিনি নোবেল কমিটি ফর ফিজিক্সের সদস্য ছিলেন। সেই আট বছর তিনি পদার্থবিজ্ঞানে নোবেল পুরষ্কার দেয়ার প্রক্রিয়ায় সরাসরি যুক্ত ছিলেন। 

তাঁর গবেষণা –  তাঁকে নোবেল পুরষ্কার ছাড়াও আরো অনেক পুরষ্কার এনে দিয়েছে। ২০০৩ সালে তিনি পেয়েছেন জুলিয়াস স্প্রিঙ্গার প্রাইজ, ২০১১ সালে পেয়েছেন ইউনেস্কোর লরিয়াল ওম্যান ইন সায়েন্স অ্যাওয়ার্ড, ২০১৩ সালে পেয়েছেন কার্ল-জেইস রিসার্চ অ্যাওয়ার্ড, ২০১৮ সালে মনোনীত হয়েছেন আমেরিকান ন্যাশনাল একাডেমি অব সায়েন্সের ফরেন অ্যাসোসিয়েট, ২০১৯ সালে পেয়েছেন ইওরোপিয়ান ফিজিক্যাল সোসাইটির প্রাইজ ফর ফান্ডামেন্টাল এস্পেক্টস অব কোয়ান্টাম ইলেকট্রনিক্স অ্যান্ড অপটিক্স। ২০২১ সালে তিনি পেয়েছেন অপটিক্যাল সোসাইটি অব আমেরিকার ম্যাক্স বর্ন অ্যাওয়ার্ড। ২০২২ সালে তিনি পেয়েছেন ইজরায়েলের উল্‌ফ ফাউন্ডেশানের উল্‌ফ প্রাইজ ফর ফিজিক্স। গত বেশ কয়েক বছর থেকে দেখা যাচ্ছে যাঁরা উল্‌ফ প্রাইজ পান, তাঁদের নোবেল পুরষ্কার পাওয়ার সম্ভাবনা বেড়ে যায় অনেকগুণ। তাই ২০২২ সালে উল্‌ফ প্রাইজ পাবার পর অনেকেই সঠিকভাবে ধারণা করেছিলেন যে অ্যান লুইলিয়ার পদার্থবিজ্ঞানে নোবেল পুরষ্কার পাবেন। 

২০২২ সালের উল্‌ফ ফিজিক্স প্রাইজ পেয়েছেন তিনজন – যাদের মধ্যে দু’জন এবার নোবেল পুরষ্কার পেয়েছেন। দ্বিতীয় জন হলেন জার্মানির প্রফেসর ফেরেঙ্ক ক্রাউজ (Ferenc Krausz) । ম্যাক্স প্ল্যাংক ইন্সটিটিউট অব কোয়ান্টাম অপটিক্স -এর পাঁচজন ডিরেক্টরের একজন হলেন ফেরেঙ্ক ক্রাউজ। একই সাথে তিনি মিউনিখ লুডবিগ ম্যাক্সিমিলান ইউনিভার্সিটিরও প্রফেসর। 

ফেরেঙ্ক ক্রাউজের জন্ম ১৯৬২ সালের ১৭ মে হাঙ্গেরিতে। ১৯৮১ থেকে ১৯৮৫ পর্যন্ত তিনি হাঙ্গেরির ইউটভোস লোরান্ড ইউনিভার্সিটিতে তত্ত্বীয় পদার্থবিজ্ঞানে বিএসসি এবং টেকনিক্যাল ইউইভার্সিটি অব বুদাপেস্ট থেকে ইলেকট্রিক্যাল ইঞ্জিনিয়ারিং ডিগ্রি অর্জন করেন। এরপর তিনি ভিয়েনায় চলে যান পিএইচডি করার জন্য। ১৯৯১ সালে তিনি ভিয়েনা ইউনিভার্সিটি অব টেকনোলজি থেকে কোয়ান্টাম ইলেকট্রনিক্সে পিএইচডি অর্জন করেন। এরপর মাত্র দুবছরের মধ্যেই তিনি ভিয়েনা ইউনিভার্সিটি অব টেকনোলজিতে ‘হ্যাবিলিটেশান’ সম্পন্ন করেন। এই হ্যাবিলিটেশান পদ্ধতিটি  ইওরোপের অনেক বিশ্ববিদ্যালয়ের শিক্ষক হতে গেলে অবশ্যই লাগে। শুধুমাত্র পিএইচডি সম্পন্ন করলেই বিশ্ববিদ্যালয়ের শিক্ষক হওয়া যায় না। বিশ্ববিদ্যালয়ের সাথে যুক্ত থেকে দীর্ঘদিন ধরে ক্লাসরুমে পড়ানো এবং গবেষণার অভিজ্ঞতা অর্জন করতে হয়। সেই সময় বিশ্ববিদ্যালয় থেকে কোন নিয়মিত বেতন-ভাতাও পাওয়া যায় না। এরপর বিশ্ববিদ্যালয়ের কমিটির কাছে নিজের যোগ্যতা প্রমাণ করতে হয়। গবেষণার জন্য গবেষণা-বক্তৃতা দিতে হয় এবং প্রতিপক্ষের প্রশ্নের উত্তর দিতে হয়। অনেক সময় পাঁচ থেকে দশ বছর সময় লেগে যায় এসব সম্পন্ন করে বিশ্ববিদ্যালয়ের শিক্ষক হতে। অবশ্য এটা হয়ে গেলে তখন পূর্ণ অধ্যাপকের মর্যাদা পাওয়া যায়। ফেরেঙ্ক ক্রাউজ খুব কম সময়ের মধ্যে ভিয়েনা ইউনিভার্সিটি অব টেকনোলজির শিক্ষক হয়ে গেলেন। ১৯৯৯ সালে তিনি ফুল প্রফেসর হয়ে গেলেন। ২০০০ সালে তিনি সেই বিশ্ববিদ্যালয়ের সেন্টার ফর এডভান্সড লাইট সোর্সেস-এর ডিরেক্টর নিযুক্ত হলেন। এর তিন বছর পর ২০০৩ সালে তিনি জার্মানিতে ম্যাক্স প্লাংক ইন্সটিটিউট অব কোয়ান্টাম অপটিক্‌স এর ডিরেক্টর পদে যোগ দেন। ২০০৪ সাল থেকে তিনি মিউনিখের লুডভিগ ম্যাক্সিমিলিয়ান ইউনিভার্সিটির এক্সপেরিমেন্টাল ফিজিক্সেরও চেয়ারম্যান হিসেবে কাজ করে আসছেন। 

অ্যাটোসেকেন্ড ফিজিক্সের একজন পথিকৃৎ বলে ধরা হয় প্রফেসর ক্রাউজকে। এবছরের নোবেল পুরষ্কার পাবার আগে তিনি গত দুই দশক ধরে অনেকগুলি জাতীয় এবং আন্তর্জাতিক গবেষণা পুরষ্কার পেয়েছেন। ২০০৫ সালে পেয়েছেন জার্মান রিসার্চ ফাউন্ডেশানের লিবনিজ প্রাইজ, ২০০৬ সালে পেয়েছেন ইলেকট্রোঅপটিক সোসাইটির কোয়ান্টাম ইলেকট্রনিক্স অ্যাওয়ার্ড এবং ব্রিটিশ রয়েল ফটোগ্রাফিক সোসাইটির প্রগ্রেস মেডেল। ২০১১ সালে পেয়েছেন ফেডারেল রিপাবলিক অব জার্মানির গবেষণা পুরষ্কার, ২০১৩ সালে পেয়েছেন কিং ফয়সাল ইন্টারন্যাশনাল অ্যাওয়ার্ড, একই বছর পেয়েছেন অটো হ্যান পুরষ্কার, ২০১৯ সালে পেয়েছেন ভ্লাডিলেন লেটোকভ মেডেল, ২০২২ সালে পেয়েছেন উল্‌ফ প্রাইজ ইন ফিজিক্স। 

এবছরের তিনজন নোবেলজয়ীর মধ্যে সবচেয়ে সিনিয়র অথচ সবচেয়ে নিভৃতচারী বিজ্ঞানী হলেন ওহাইও স্টেট ইউনিভার্সিটির অবসরপ্রাপ্ত অধ্যাপক পিয়ের আগস্তিনি (Pierre Agostini)। নোবেল পুরষ্কার পাওয়ার আগে এই মানুষটির কোন উইকিপিডিয়া পেজও ছিল না। ওহাইও স্টেট ইউনিভার্সিটির ওয়েবসাইটেও যেনতেনভাবে একটি পুরনো ছবির সাথে মাত্র দু-তিন লাইনের পরিচিতি ছিল প্রফেসর আগস্তিনির। পুরষ্কার ঘোষণার আগে নোবেল কমিটি ফোনে যোগাযোগও করতে পারেননি পিয়েরের সাথে। [ওহাইও স্টেট ইউনিভার্সিটিতে পোস্টডক করার সময় পিয়ের আগস্তিনিকে এবং তাঁর কাজকর্মের কিছুটা কাছ থেকে  দেখার সুযোগ আমার হয়েছিল। তখন তিনি চৌষট্টি বছর বয়সে ওহাইও স্টেট ইউনিভার্সিটিতে সবেমাত্র যোগ দিয়েছেন প্রফেসর হিসেবে। তাঁর কাজকর্মে কেমন যেন একটা সন্নাসীসুলভ আচরণ ছিল, কিছুতেই যেন কিছু যায় আসে না এরকম একটা ভাব। এত বছর পর বিজ্ঞানের সর্বোচ্চ পুরষ্কার নোবেলস্বীকৃতি পাবার পরেও তাঁর ভেতর সেরকম কোন উচ্ছ্বাস দেখা যায়নি। তাঁর মেয়ে ফোন করে তাঁকে জানিয়েছেন যে তিনি গুগলে দেখেছেন যে নোবেল পুরষ্কার পেয়েছেন।]

১৯৪১ সালের ২৩ জুলাই ফ্রেন্স টিউনিসিয়ার টিউনিসে জন্ম পিয়ের আগস্তিনির। ১৯৫৯ সালে ফ্রান্সের প্রাইতানি ন্যাশনাল মিলিটারি স্কুল থেকে স্কুল পাস করে দক্ষিণ ফ্রান্সের এইক্স-মারসিলি ইউনিভার্সিটিতে ভর্তি হলেন। ১৯৬১ সালে ফিজিক্সে বিএড এবং ১৯৬২ সালে এমএস ডিগ্রি অর্জন করেন। ১৯৬৮ সালে তিনি অপটিক্সে ডক্টরেট ডিগ্রি অর্জন করেন। আলট্রাভায়োলেট রশ্মির মাল্টিলেয়ার ডায়ইলেকট্রিক ফিল্টার নিয়ে পিএইচডি গবেষণা করেন আগস্তিনি। পিএইচডি করার পরের বছরই পিয়ের যোগ দেন ফ্রান্স এটমিক এনার্জি কমিশনের স্যাকলে সেন্টারে। সেখানেই তিনি গবেষণা করেছেন পরবর্তী চৌত্রিশ বছর। ১৯৮৬ থেকে ১৯৯৪ সাল পর্যন্ত  অ্যান লুইলিয়ার এই গবেষণাকেন্দ্রে পিয়ের আগস্তিনির সহকর্মী ছিলেন। কিন্তু সেই সময় তাঁদের মধ্যে উল্লেখযোগ্য যৌথগবেষণা সেরকম হয়নি। তাঁরা যে একদিন নোবেল পুরষ্কার শেয়ার করবেন সেদিন কেউই ভাবতে পারেননি। ২০০২ সাল থেকে ২০০৪ পর্যন্ত পিয়ের আগস্তিনি নিউইয়র্কের ব্রুকহ্যাভেন ন্যাশনাল ল্যাবরেটরিতে ভিজিটিং সায়েন্টিস্ট হিসেবে কাজ করার পর ২০০৫ সালে ওহাইও স্টেট ইউনিভার্সিটির ফিজিক্স ডিপার্টমেন্টে যোগ দেন প্রফেসর হিসেবে। ২০১৮ সালে ৭৭ বছর বয়সে তিনি অবসর গ্রহণ করার পর ইমেরিটাস অধ্যাপক হিসেবে তালিকাভুক্ত হন। এবছর তিনি নোবেল পুরষ্কার পাবেন এটা অপ্রত্যাশিত ছিল। অবশ্য এর আগে তিনি বেশ কিছু গুরুত্বপূর্ণ পুরষ্কার পেয়েছিলেন। ১৯৯৫ সালে ফ্রেন্স একাডেমি অব সায়েন্সের গুস্তাভ রিবাউড প্রাইজ, ২০০৩ সালে গে-লুসাক-হামবোল্ট প্রাইজ, ২০০৭ সালে অপটিক্যাল সোসাইটি অব আমেরিকার মেগার্স অ্যাওয়ার্ড ইন স্পেকট্রোস্কোপি। 

এবার দেখা যাক অ্যাটোসেকেন্ড ফিজিক্সের উৎপত্তি এবং ক্রমবিকাশ কীভাবে ঘটেছে। গত শতকের শেষের দুই দশকে লেজার বিজ্ঞানের প্রভূত উন্নত ঘটেছে। লেজারের সাহায্যে ফেমটোস্কেলের আলোর স্পন্দন উৎপাদন করা সম্ভব হয়েছে। রাসায়নিক বিক্রিয়ার সময় আণবিক স্কেলের পরিবর্তনগুলি দেখা সম্ভব হয়েছে ফেমটোসেকেন্ড স্পন্দনের মাধ্যমে। উদ্ভব হয়েছিল ফেমটোকেমিস্ট্রির। বিংশ শতাব্দীর একেবারে শেষে ১৯৯৯ সালে রসায়নে নোবেল পুরষ্কার দেয়া হয়েছিল ফেমটোকেমিস্ট্রির জন্য। ফেমটোমিটার হলো ১০-১৫ মিটার। ক্যালটেকের প্রফেসর আহমেদ জিওয়াইল নোবেল পুরষ্কার পেয়েছিলেন রাসায়নিক বিক্রিয়ার সময় অণুর মধ্যে পরমাণুগুলি কীভাবে চলাচল করে তা দেখার একটি পদ্ধতি আবিষ্কারের জন্য। তিনি সেটা করেছিলেন লেজার টেকনিক ব্যবহার করে। তখন ফেমটোকেমিস্ট্রির আবিষ্কার নিয়ে উদ্দীপ্ত হয়েছিল বিজ্ঞানসমাজ। এর কয়েক বছরের মধ্যেই জন্ম অ্যাটোসেকেন্ড ফিজিক্সের।

ক্ষুদ্রাতিক্ষুদ্র সময়ের জন্য আলোর স্পন্দন তৈরি করা সম্ভব লেজার রশ্মির মাধ্যমে। এটা বুঝতে হলে আমাদের জানতে হবে লেজার কীভাবে তৈরি হয়। লেজার শব্দটি এসেছে লাইট অ্যামপ্লিফিকেশান বাই স্টিমুলেটেড এমিশান অব রেডিয়েশান (Light Amplification by Stimulated Emission of Radiation) থেকে। বিশেষ উদ্দীপনায় আলোর বিকিরণ ঘটিয়ে সাধারণ আলোর ক্ষমতা ও শক্তি বহুগুণ বাড়িয়ে তুলে লেজার তৈরি করা হয়। লেজার তৈরির প্রথম ধারণা দিয়েছিলেন আলবার্ট আইনস্টাইন ১৯১৭ সালে। তিনি তাঁর ‘অন দি কোয়ান্টাম থিওরি অব রেডিয়েশান’ গবেষণাপত্রে ফোটনের ধর্ম কাজের বিস্তারিত বিবরণ দিয়েছেন [On the Quantum Theroy of Radiation, Physikalische Zeitschrift, vol 18 (1917) pp 121-128]। সেখানে তিনি দেখিয়েছেন যদি কোন ফোটন কোন পরমাণুর ইলেকট্রনকে ধাক্কা দেয়, তবে ইলেকট্রনটি ফোটনের শক্তি শোষণ করে উত্তেজিত হবে। উত্তেজিত হয়ে ইলেকট্রনটি তার মূল শক্তিস্তর থেকে উচ্চতর শক্তিস্তরে চলে যাবে। কিন্তু যদি ফোটন কোন উচ্চ শক্তিস্তরের ইলেকট্রনকে ধাক্কা দেয়, তখন উচ্চ শক্তিস্তরের ইলেকট্রন তার অতিরিক্ত শক্তি ত্যাগ করে নিজের মূল শক্তিস্তরে ফিরে আসবে। এই শক্তিস্তর পরিবর্তনের সময় যে শক্তি ত্যাগ করবে সেই শক্তি যে ফোটনটি ধাক্কা দিয়েছিল সেই ফোটনের শক্তির সমান। এক্ষেত্রে একই শক্তির দুটি ফোটন একই দিকে একইভাবে ছুটে যাবে। এই দুটি ফোটন যদি আবার দুটি উত্তেজিত ইলেকট্রনকে ধাক্কা দেয়, আরো দুটি সমান শক্তির ফোটন পাওয়া যাবে। মোট ফোটন হবে চারটি। এই প্রক্রিয়া চলতে থাকলে এই চারটি থেকে আটটি, আটটি থেকে ষোলটি, ষোলটি থেকে বত্রিশটি – এভাবে কোটি কোটি একই শক্তির ফোটনের স্রোত তৈরি হবে। এই ফোটনগুলির প্রত্যেকটির তরঙ্গদৈর্ঘ্য সমান। ফলে এদের সম্মিলিত প্রাবল্য হবে সাধারণ আলোর চেয়ে অনেক বেশি। 


লেজার উৎপাদনের মূল পদ্ধতি


লেজার উৎপাদনের মূলনীতি হলো পদার্থবিজ্ঞানের কোয়ান্টাম মেকানিক্সের নীতি। পরমাণুর ভেতর ইলেকট্রনগুলি নিউক্লিয়াসের চারপাশে নিজস্ব কক্ষপথে ঘুরতে থাকে। কোয়ান্টাম মেকানিক্সের নিয়মে এগুলি কক্ষপথে বিন্যস্ত থাকে – প্রথম কক্ষপথে ২টি, ২য় কক্ষপথে ৮টি, ৩য় কক্ষপথে ১৮টি ইত্যাদি। ইলেকট্রনের কক্ষপথগুলি হলো তাদের শক্তিস্তর। একটি কক্ষপথে যতগুলি ইলেকট্রন থাকে সবগুলি ইলেকট্রনের শক্তি সমান। নিউক্লিয়াসের সবচেয়ে কাছের যে কক্ষপথ (১ম কক্ষপথ) – সেই কক্ষপথে যেসব ইলেকট্রন থাকে তাদের শক্তি সবচেয়ে কম। এই শক্তিস্তরকে গ্রাউন্ড স্টেট বলা হয়। ইলেকট্রনগুলি যদি কোনভাবে শক্তি শোষণ করে তখন তারা উত্তেজিত হয়ে নিজেদের শক্তিস্তর থেকে উচ্চতর শক্তিস্তরে চলে যায়। কিন্তু একটু পরেই সেই অতিরিক্ত শক্তি ত্যাগ করে নিজের শক্তিস্তরে ফিরে আসে। স্বতস্ফূর্তভাবে শক্তি নির্গমনের এই প্রক্রিয়াকে স্পনটেনিয়াস এমিশান (spontaneous emission) বলা হয়। পরমাণুর ইলেকট্রনগুলিকে যদি নির্দিষ্ট শক্তির ফোটনের সাথে মিথস্ক্রিয়া ঘটানো যায়, তাহলে ফোটনের শক্তি শোষণ করে ইলেকট্রনগুলি উত্তেজিত হয়ে উচ্চতর শক্তিস্তরে চলে যায়। তারপর যখন নিজের শক্তিস্তরে ফিরে আসে তখন যে শক্তি শোষণ করেছিল তা ফোটনের মাধ্যমে বের করে দেয়। এই নির্গত ফোটনের শক্তি শোষিত ফোটনের শক্তির সমান। ফোটনের প্রবাহ যদি অনবরত চলতে থাকে – তাহলে একটি ফোটন থেকে একই শক্তির ২টি ফোটন, ২টি থেকে ৪টি, ৪টি থেকে ৮টি ফোটন – এভাবে সেকেন্ডের মধ্যে কোটি কোটি ফোটনের প্রবাহ পাওয়া যায়। প্রত্যেকটি ফোটনের শক্তি সমান এবং প্রত্যেকেই একই সাথে একই দিকে যায়। তীব্র প্রাবল্যের এই ফোটনপ্রবাহই লেজার। সাধারণ দৃশ্যমান আলোতে ৪০০ থেকে ৭০০ ন্যানোমিটার তরঙ্গদৈর্ঘ্যের যে কোন তরঙ্গ থাকতে পারে। তাই আলোকরশ্মি সমশক্তির হয় না এবং বিভিন্ন তরঙ্গদৈর্ঘ্যের মিশ্রণের কারণে সবগুলি ফোটন একদিকে না গিয়ে বিভিন্ন দিকে ছড়িয়ে পড়ে। কিন্তু লেজারে সবগুলি ফোটনের শক্তি সমান, ফলে তরঙ্গদৈর্ঘ্যও সমান। ফলে তারা সব একবিন্দুতে কেন্দ্রীভূত থাকে। লেজার রশ্মি তাই একটুও না ছড়িয়ে অনেক দূর পর্যন্ত যেতে পারে। পৃথিবী থেকে চাঁদের পৃষ্ঠে লেজার রশ্মি পাঠানো হয়, সেই রশ্মি একটুও ছড়িয়ে না পড়ে চাঁদের পিঠে রাখা আয়নাতে প্রতিফলিত হয়ে আবার পৃথিবীতে ফিরে আসে। 

সব ধরনের লেজারেরই মূল প্রস্তুত প্রণালী কমবেশি একই রকম। প্রথমে দরকার একটি উপযুক্ত পদার্থের অ্যামপ্লিফাইয়িং মিডিয়াম বা গেইন মিডিয়াম বা অ্যাকটিভ মিডিয়াম। এই মিডিয়ামের ইলেকট্রনকে উত্তেজিত করে ফোটন বের করা হয়। এই মিডিয়াম কঠিন, গ্যাস, সেমিকন্ডাক্টর ইত্যাদি হতে পারে। এই পদার্থের উপর বিশেষ তরঙ্গদৈর্ঘ্যের   আলো প্রয়োগ করলে পদার্থের ইলেকট্রন উত্তেজিত হয় এবং ফোটন নির্গত হয়। অ্যাকটিভ মিডিয়ামের আলোর ক্ষমতা বাড়ানোর জন্য মিডিয়ামের চারপাশে বিদ্যুৎ প্রবাহ চালনা করা হয়, অথবা অন্য তরঙ্গদৈর্ঘ্যের আলোক রশ্মি প্রয়োগ করা হয়। এই পদ্ধতিকে বলা হয় পাম্পিং। ফ্ল্যাশ লাইট বা অন্য লেজার দিয়েও এই পাম্পিং করা যায়। পাম্পিংসহ অ্যাকটিভ মিডিয়ামকে একটি সিলিন্ডার আকৃতির নলের মধ্যে স্থাপন করা হয়। এই নলটিকে বলা হয় লেজার ক্যাভিটি। এই নলের দুই প্রান্তে দুটি আয়না বসানো থাকে। নলের ভেতর যে আলো উৎপন্ন হয় সেই আলো এই আয়না দুটোতে অনবরত প্রতিফলিত হতে থাকে। একটি আয়না নলের ভেতরের সব আলোর প্রতিফলন ঘটায়। অন্যদিকের আয়নাটি পুরোপুরি প্রতিফলক নয়। সেই আয়না কিছুটা স্বচ্ছ – যার ভেতর দিয়ে লেজার রশ্মি বের হয়ে আসে। সাধারণত অ্যাকটিভ মিডিয়ামের নাম অনুসারে লেজারের নাম হয়ে থাকে। যেমন অ্যাকটিভ মিডিয়াম রুবি হলে – রুবি লেজার, গেইন মিডিয়াম আর্গন গ্যাস হলে আর্গন লেজার ইত্যাদি। বিভিন্ন মিডিয়াম থেকে উৎপন্ন লেজারের শক্তি এবং তরঙ্গদৈর্ঘ্যও ভিন্ন ভিন্ন হয়ে থাকে।

লেজারের ক্ষমতা ফেমটোসেকেন্ড স্পন্দনে আটকে ছিল অনেকগুলি বছর। ফেমটোসেকেন্ড পার হয়ে অটোসেকেন্ডে আসার জন্য আরো ছোট সময়ের পালস তৈরি করতে হয়েছে বিজ্ঞানীদের। কীভাবে সম্ভব হয়েছে এত ক্ষুদ্র সময়ের আলোর স্পন্দন তৈরি করা? 

একটি পদ্ধতি হলো – হাই হারমোনিক জেনারেশন (HHG) পদ্ধতি যেখানে পরমাণুর একটি ইলেকট্রন অনেকগুলি কম শক্তির ফোটন শোষণ করতে থাকে একের পর এক। এরপর একটি উচ্চশক্তির ফোটন বের করে দেয়। কিন্তু কয়েক দশক আগে এ ধরনের প্রক্রিয়ায় দেখা গেছে ফোটনের শক্তি বৃদ্ধির সাথে সাথে ফোটন নির্গমনের হার কমে যাচ্ছে। ফলে উচ্চ শক্তির আলোর স্পন্দন তৈরি করা সম্ভব হচ্ছিল না। 

১৯৮৭ সালে অ্যান লুইলিয়ার এবং তাঁর গবেষকদল আর্গন গ্যাসে ইনফ্রারেড লেজার (অবলোহিত লেজার) প্রয়োগ করে দেখলেন যে শক্তি বৃদ্ধির সাথে সাথে নির্গত ফোটনের সংখ্যা সেভাবে কমে না গিয়ে বরং একটা স্থিতাবস্থায় আসছে। এই ব্যাপারটি খুবই আশাপ্রদ মনে হয়েছে তাঁর দলের কাছে। এর কয়েক বছরের মধ্যেই লুইলিয়ার এবং অন্যান্য বিজ্ঞানীরা বুঝতে পেরেছেন এইচএইচজি-তে আসলে কী হচ্ছে। 

আর্গন গ্যাসের মধ্যে লেজার রশ্মি চালনার ফলে  ইলেকট্রন তিনটি কাজ করছে এক সাথে। প্রথমত কোয়ান্টাম টানেলিং-এর মাধ্যমে ইলেকট্রন পরমাণু থেকে বিচ্ছিন্ন হয়ে যাচ্ছে। তারপর ত্বরণ লাভ করে দ্রুত দূরে সরে যাচ্ছে। এরপর আবার আলোর তরঙ্গের দিক পরিবর্তনের সময় ইলেকট্রন তার নিজের জায়গায় ফিরে আসছে – শক্তিক্ষয় করে। এই শক্তিক্ষয় হচ্ছে উচ্চশক্তির ফোটন নির্গমণের মাধ্যমে। আর্গনে লেজার প্রয়োগ করার পর এই ব্যাপারটি একাধিকবার ঘটছে – ফলে আলট্রাফাস্ট অ্যাটোসেকেন্ড স্কেলের আলোর স্পন্দন তৈরি হচ্ছে গ্যাসের মধ্যে।

অ্যান লুইলিয়ারের কাজ থেকে একটি কর্মক্ষম অ্যাটোসেকেন্ড স্পন্দনের উৎস তৈরি করতে আরো দুটো ধাপ পার হতে হয়েছে। দুটো নতুন দরকারি পদ্ধতি উদ্ভাবন করতে হয়েছে। প্রথমত স্পন্দনের সময় মাপতে হয়েছে, দ্বিতীয়ত আলাদা আলাদা স্পন্দন তৈরি করতে হয়েছে। পদ্ধতিদুটোর কোনটিই সহজ নয়। এত ক্ষুদ্র সময়ের স্পন্দন মাপার একটি পদ্ধতির নাম FROG – ব্যাঙ পদ্ধতি। Frequency Resolved optical gating – FROG. কিন্তু অ্যাটোসেকেন্ড মাপা সম্ভব নয় এই পদ্ধতিতে। কারণ FROG পদ্ধতি খুবই কম শক্তি সম্পন্ন। এটি ফেমটোসেকেন্ডে সীমাবদ্ধ। 

২০০১ সালে পিয়ের আগস্তিনি নতুন পদ্ধতি বানালেন – র‍্যাবিট (খরগোশ) পদ্ধতি। RABBIT – Reconstruction of Attosecond Beating by Interference of two-photon transitions. যেখানে একটি অপটিক্যাল লেজারের তড়িৎক্ষেত্র অ্যাটোসেকেন্ড স্পন্দনের সাথে যোগ করে দেয়া হয়। এই পদ্ধতিতে পিয়ের আগস্তিনি এবং তাঁর দল ২৫০ অটোসেকেন্ডের ধারাবাহিক আলোর স্পন্দন তৈরি করতে সমর্থ হন। 

এদিকে প্রফেসর ফেরেঙ্ক ক্রাউজের দল জার্মানিতে স্বতন্ত্রভাবে একই ধরনের আরেকটি পদ্ধতি উদ্ভাবন করেন – যেখানে তিনি অ্যাটোসেকেন্ড স্ট্রিকিং (Streaking) পদ্ধতিতে ৬৫০ অটোসেকেন্ডের স্পন্দনকে স্বতন্ত্রভাবে প্রয়োগ করতে সক্ষম হন। এভাবে অ্যাটোসেকেন্ড স্পন্দন পদ্ধতি আয়ত্বে আসার পর অতিক্ষুদ্র আলোর স্পন্দন তৈরি করা সম্ভব হচ্ছে এখন। 

প্রফেসর লুইলিয়ার এবং ক্রাউজ তাঁদের অ্যাটোসেকেন্ড ফিজিক্সের গবেষণা ক্রমাগত চালিয়ে গেলেও – প্রফেসর পিয়ের আগস্তিনি আশাও করেননি যে বিশ বছর আগে তিনি যা উদ্ভাবন করেছিলেন তা এতদিন পরে এত গুরুত্ব পাবে। 

অ্যাটোসেকেন্ড পাল্‌স বা স্পন্দনের অনেক বাস্তব ব্যবহারিক সম্ভাবনা দেখা যাচ্ছে। রাসায়নিক কার্যকলাপ দেখার জন্য ফেমটোসেকেন্ড কেমিস্ট্রি যথেষ্ট। কিন্তু আরো সুনির্দিষ্টভাবে ইলেকট্রনের কার্যক্রম দেখতে হলে অ্যাটোসেকেন্ড পাল্‌স দরকার। অ্যাটোসেকেন্ড স্পন্দন এত বেশি সুনির্দিষ্ট এবং সূক্ষ্ম যে পরমাণুর ইলেকট্রনের কাজকর্ম দেখতে পারবে সেটা। তার মানে ইলেকট্রনের কাজকর্ম সরাসরি দেখা যাবে। অ্যাটোসেকেন্ড পাল্‌স সলিডের ধর্মাবলি নিয়ন্ত্রণ করতে পারবে, অপরিবাহীকে পরিবাহীতে রূপান্তরিত করতে পারবে। খুব কম সময়ের মধ্যেই – ইলেকট্রনিক্সের ডায়নামিক্স পরিবর্তন করা যাবে। আলট্রাফাস্ট সুইচিং সম্ভব হবে যেখানে  – সিলিকন ডাই অক্সাইড – অপরিবাহী থেকে দ্রুত পরিবাহীতে পরিণত হতে পারে। ফলে ইলেকট্রনিক্সের জগতে এর বিরাট ব্যবহারিক ক্ষেত্র উন্মুক্ত হবে। উদ্ভাবিত হবে খুবই ফাস্ট ইলেকট্রনিক্স – জন্ম নেবে অনেক নতুন প্রযুক্তির। 

মানুষের রোগ নির্ণয়ে খুবই গুরুত্বপূর্ণ ভূমিকা রাখতে পারবে অ্যাটোসেকেন্ড পাল্‌স – যা হয়ে উঠবে মলিকিউলার ফিঙ্গার প্রিন্ট অব বায়োলজিক্যাল স্যাম্পলস। যেমন, রক্তের নমুনায় অ্যাটোসেকেন্ড স্পন্দনের এর মাধ্যমে রক্তের উপাদানের সূক্ষ্মাতিসূক্ষ্ম পরিবর্তনও লক্ষ্য করা সম্ভব হবে। ফুসফুসের ক্যান্সারের কথাই ধরা যাক – যেখানে রক্তের পরিবর্তন ধরতে পারা জরুরি। রক্তের উপাদানের রসায়নে কোন পরিবর্তন হলে তা দ্রুত মনিটর করা যাবে। দ্রুততম সময়ে শনাক্ত করতে পারলে উপযুক্ত চিকিৎসা সম্ভব হবে। ক্ষুদ্রতম সময়ের আলোর স্পন্দন যতবার দরকার শরীরে প্রবেশ করানো যাবে, তাতে কোন ক্ষতি হবে না, কারণ এই আলো স্বাভাবিক কপাঙ্কের আলো – যার তেজস্ক্রিয় বিকিরণ নেই। 

মৌলিক গবেষণা এবং নতুন জ্ঞান সৃষ্টিতেও বিরাট ভূমিকা রাখবে অ্যাটোসেকেন্ড পাল্‌স। যেমন, আইনস্টাইনের ফটোইলেকট্রিক ইফেক্ট আরো ভালোভাবে বোঝা যাবে। আলোর ফোটন বস্তুর উপর পড়ার পর ধাতু থেকে ইলেকট্রন নির্গত হয়। ধারণা করা হয় এই পদ্ধতিতে আলো পড়ার সাথে সাথেই ইলেকট্রন নির্গত হয়। কিন্তু অ্যাটোসেকেন্ড পাল্‌স দেখাচ্ছে যে এই পদ্ধতি সাথে সাথে ঘটছে না। আলো শোষণ এবং ইলেকট্রন নির্গমনের মধ্যে বেশ কয়েক অ্যাটোসেকেন্ড ফাঁক রয়ে যাচ্ছে। বোঝাই যাচ্ছে পদার্থবিজ্ঞানের আরো অনেক নতুন নতুন বিষয় জানা যাবে, কিংবা পুরনো বিষয় আরো ভালোভাবে জানা যাবে। অদূর ভবিষ্যতে কোয়ান্টাম বায়োলজি অনেক বেশি গুরুত্ব পাবে। ফেমটোকেমিস্ট্রি থেকে অটোকেমিস্ট্রির জগত খুলে যাবে।


তথ্যসূত্র

১। সায়েন্টিফিক আমেরিকান, ৩ অক্টোবর ২০২৩। 

২। www.nobelprize.org October 3, 2023. 

৩। ফেরেঙ্ক ক্রাউজ ও মিশা ইভানভ, অ্যাটোসেকেন্ড ফিজিক্স, ন্যাশনাল রিসার্চ কাউন্সিল, কানাডা, ২০০৯। 

৪। প্রদীপ দেব, রোগনির্ণয় ও চিকিৎসায় পদার্থবিজ্ঞান, প্রথমা, ২০২২। 

৫। phys.org, October 3, 2023. 

__________________
বিজ্ঞানচিন্তা অক্টোবর ২০২৩ সংখ্যায় প্রকাশিত











Saturday, 7 October 2023

নোবেল পুরষ্কার ২০২৩ – শান্তি

 



ইরানের নার্গিস মোহাম্মদী ২০২৩ সালের নোবেল শান্তি পুরষ্কার পেয়েছেন। ইরানে নারীদের উপর অত্যাচারের বিরুদ্ধে তাঁর প্রতিবাদ ও সংগ্রামের স্বীকৃতি এই নোবেল শান্তি পুরষ্কার। 


নার্গিস মোহাম্মদী


নার্গিস মোহাম্মদী



তাঁর জন্ম ১৯৭২ সালের ২১ এপ্রিল ইরানের জানজানে। অন্যায়ের প্রতিবাদ করার কারণে ইরানের শাসকরা তাঁকে ১৩বার বন্দী করেছে, পাঁচ বার তাঁকে  আদালত বিভিন্ন মেয়াদে কারাদন্ড এবং চাবুক মারার শাস্তি দিয়েছে। সব মিলিয়ে তিনি এখন একত্রিশ বছরের কারাদন্ড ভোগ করছেন ইরানের জেলখানায়। তাঁকে একশ চুয়ান্নবার বেত্রাঘাত করা হবে শাসকরা যেদিন চাইবে।


নোবেল পুরষ্কার ২০২৩ – সাহিত্য

 


২০২৩ সালের সাহিত্যে নোবেল পুরষ্কার পেয়েছেন নরওয়ের লেখক ইয়ন ফসি (Jon Fosse)। ১৯৫৯  সালের ২৯ সেপ্টেম্বর জন্ম তাঁর। গদ্য, পদ্য, নাটক, প্রবন্ধ অনেককিছু লিখেছেন তিনি। অনেকগুলি সাহিত্য পুরষ্কার পেয়েছেন। মূলত নরওয়েজিয়ান ভাষায় লেখেন তিনি। তবে অনেক পদ্য, গদ্য এবং নাটক ইংরেজিতে অনূদিত হয়েছে। 


ইয়ন ফসি


[অন্যান্য বছরের মতো এবছরও দেখা যাচ্ছে, নোবেল পুরষ্কারপ্রাপ্ত সাহিত্যিকের নাম আমি এই প্রথম শুনলাম। বিশ্বসাহিত্যে আমার জ্ঞান যে শূন্য তা আবারো প্রমাণিত হলো।]


নোবেল পুরষ্কার ২০২৩ – রসায়ন

 



২০২৩ সালের রসায়ন নোবেল পুরষ্কার ন্যানোপার্টিক্যালের। তিনজন আমেরিকান রসায়নবিজ্ঞানী আলেক্সেই একিমভ, মঞ্জি বাবেন্ডি, এবং লুই ব্রুস এ বছরের রসায়নে নোবেল পুরষ্কার পেয়েছেন কোয়ান্টাম ডট আবিষ্কারের জন্য। 


মঞ্জি বাবেন্ডি

এম আই টির প্রফেসর মঞ্জি বাবেন্ডি (Moungi Bawendi)র জন্ম ১৯৬১ সালে প্যারিসে। ১৯৮৮ সালে তিনি শিকাগো বিশ্ববিদ্যালয় থেকে পিএইচডি অর্জন করেন। 


লুই ব্রুস


কলম্বিয়া বিশ্ববিদ্যালয়ের প্রফেসর লুই ব্রুসের (Louis Brus) জন্ম ১৯৪৩ সালে ওহাইওর ক্লিভল্যান্ডে। ১৯৬৯ সালে তিনি কলম্বিয়া বিশ্ববিদ্যালয় থেকে পিএইচডি অর্জন করেন।


আলেক্সেই একিমভ


নিউইয়র্কের ন্যানোকৃস্টাল টেকনোলজি কোম্পানির প্রাক্তন প্রধান বিজ্ঞানী আলেক্সেই একিমভের (Alexei Ekimov) জন্ম তদানীন্তন সোভিয়েত ইউনিয়নে ১৯৪৫ সালে। ১৯৭৪ সালে তিনি পিএইচডি অর্জন করেন রাশিয়ার সেন্ট পিটার্সবার্গ ফিজিক্যাল-টেকনিক্যাল ইন্সটিটিউট থেকে। 

বর্তমানে QLED টেকনোলোজিতে কোয়ান্টাম ডট ব্যবহার করা হচ্ছে। এই প্রযুক্তিতে কম্পিউটার মনিটর এবং স্মার্ট টেলিভিশন স্ক্রিন আলোকিত করা হচ্ছে। ভবিষ্যতের মাইক্রোইলেকট্রনিক্স হবে ন্যানোটেকনোলজি নির্ভর - যেখানে কোয়ান্টাম ডট ব্যবহৃত হবে নিয়মিতভাবে।


নোবেল পুরষ্কার ২০২৩ – পদার্থবিজ্ঞান

 



২০২৩ সালের পদার্থবিজ্ঞান নোবেল পুরষ্কার পেয়েছেন ওহাইও স্টেট ইউনিভার্সিটির অধ্যাপক পিয়ের আগস্তিনি, ম্যাক্স প্লাংক ইন্সটিটিউট অব কোয়ান্টাম অপটিক্‌স এর ডিরেক্টর প্রফেসর ফেরেঙ্ক ক্রাউজ এবং সুইডেনের লুন্ড ইউনিভার্সিটির প্রফেসর অ্যান লুইলিয়ের। ইলেকট্রন ডায়নামিক্স গবেষণায় খুবই ক্ষুদ্র (অটোসেকেন্ড ১০^-১৮ সেকেন্ড) সময়ের জন্য আলোর স্পন্দন (পাল্‌স)  তৈরির পদ্ধতি উদ্ভাবনের জন্য এবছরের পদার্থবিজ্ঞানের নোবেল পুরষ্কার দেয়া হয়েছে। ইলেকট্রনিক্স, মেডিকেল ইন্সট্রুমেন্টসহ আরো অনেক ক্ষেত্রে এই অতিক্ষুদ্র আলোর স্পন্দনের ব্যবহারের সম্ভাবনা আছে।


অ্যান লুইলিয়ার



অ্যান লুইলিয়ার (Anne L’Huillier)-এর জন্ম ১৯৫৮ সালের ১৬ আগস্ট ফ্রান্সের প্যারিসে। প্যারিসের ইকোল নরমাল সুপেরিয়র থেকে পদার্থবিজ্ঞানে বিএ পাস করার পর পিয়ের অ্যান্ড মেরি কুরি ইউনিভার্সিটি থেকে গণিত ও তত্ত্বীয় পদার্থবিজ্ঞানে ডাবল মাস্টার্স ডিগ্রি অর্জন করেন। এরপর তিনি একই বিশ্ববিদ্যালয় থেকে পিএইচডি ডিগ্রি অর্জন করেন পরীক্ষণ পদার্থবিজ্ঞানে ১৯৮৬ সালে। তাঁর থিসিসের শিরোনাম ছিল ‘মাল্টিফোটন অ্যান্ড মাল্টিইলেকট্রন আয়নাইজেশান’। উচ্চ তীব্রতার লেজার রশ্মি প্রয়োগে একাধিক ফোটন এবং ইলেকট্রনের আয়নাইজেশান সংক্রান্ত গবেষণা করেন তিনি তাঁর পিএইচডির সময় – যা পরবর্তীতে আরো গভীরে গিয়ে তাঁর নোবেল পুরষ্কারের পথ তৈরি করেছিল।
পিএইচডি করার পর তিনি সুইডেনের গুথেনবার্গের কালমার্স ইন্সটিটিউট অব টেকনোলজিতে পোস্টডক ফেলো হিসেবে যোগ দেন, এবং এর কিছুদিন পর আমেরিকার লস এঞ্জেলেস-এ ইউনিভার্সিটি অব সাউদার্ন ক্যালিফোর্নিয়ায় চলে যান। তবে বেশিদিন ছিলেন না সেখানে। ইতোমধ্যে তিনি ফ্রান্সের অ্যাটমিক এনার্জি কমিশনের অধীনে যে নয়টি গবেষণাকেন্দ্র আছে – তাদের অন্যতম কেন্দ্র স্যাকলে সেন্টারে গবেষক হিসেবে যোগদান করেন। ১৯৯২ সালে তিনি সুইডেনের লুন্ড ইউনিভার্সিটিতে টাইটানিয়াম-স্যাফায়ার সলিড স্টেট লেজার সিস্টেমে কাজ করেন। ওটা ছিল ইওরোপের প্রথম ফেমটোসেকেন্ড পাল্‌স উৎপাদনক্ষম লেজার। ফেমটোসেকেন্ড হলো ১০-১৫ সেকেন্ড, অর্থাৎ এক সেকেন্ডের একশ কোটি ভাগের একভাগ সময়কে আরো দশ লক্ষ ভাগ করলে প্রতি ভাগ সময়ের সমান। ফেমটোসেকেন্ড পাল্‌স হলো ফেমটোসেকেন্ড স্থায়ী আলোর স্পন্দন। লেজারের সাহায্যে এরকম স্পন্দন তৈরি করা শুরু হয়েছিল ১৯৯০র দশকে। ১৯৯৪ সালে অ্যান পাকাপাকিভাবে প্যারিস থেকে সুইডেনে চলে যান লুন্ড ইউনিভার্সিটির লেকচারার হিসেবে। ১৯৯৭ সালেই তিনি লুন্ড ইউনিভার্সিটির প্রফেসর পদে উন্নীত হন। ২০০৪ সালে তিনি সুইডিশ একাডেমি অব সায়েন্সের সদস্যপদ লাভ করেন। ২০০৭ থেকে ২০১৫ পর্যন্ত তিনি নোবেল কমিটি ফর ফিজিক্সের সদস্য ছিলেন। সেই আট বছর তিনি পদার্থবিজ্ঞানে নোবেল পুরষ্কার দেয়ার প্রক্রিয়ায় সরাসরি যুক্ত ছিলেন।


ফেরেঙ্ক ক্রাউজ



ফেরেঙ্ক ক্রাউজের জন্ম ১৯৬২ সালের ১৭ মে হাঙ্গেরিতে। ১৯৮১ থেকে ১৯৮৫ পর্যন্ত তিনি হাঙ্গেরির ইউটভোস লোরান্ড ইউনিভার্সিটিতে তত্ত্বীয় পদার্থবিজ্ঞানে বিএসসি এবং টেকনিক্যাল ইউইভার্সিটি অব বুদাপেস্ট থেকে ইলেকট্রিক্যাল ইঞ্জিনিয়ারিং ডিগ্রি অর্জন করেন। এরপর তিনি ভিয়েনায় চলে যান পিএইচডি করার জন্য। ১৯৯১ সালে তিনি ভিয়েনা ইউনিভার্সিটি অব টেকনোলজি থেকে কোয়ান্টাম ইলেকট্রনিক্সে পিএইচডি অর্জন করেন। এরপর মাত্র দুবছরের মধ্যেই তিনি ভিয়েনা ইউনিভার্সিটি অব টেকনোলজিতে ‘হ্যাবিলিটেশান’ সম্পন্ন করেন। এই হ্যাবিলিটেশান পদ্ধতিটি  ইওরোপের অনেক বিশ্ববিদ্যালয়ের শিক্ষক হতে গেলে অবশ্যই লাগে। শুধুমাত্র পিএইচডি সম্পন্ন করলেই বিশ্ববিদ্যালয়ের শিক্ষক হওয়া যায় না। বিশ্ববিদ্যালয়ের সাথে যুক্ত থেকে দীর্ঘদিন ধরে ক্লাসরুমে পড়ানো এবং গবেষণার অভিজ্ঞতা অর্জন করতে হয়। সেই সময় বিশ্ববিদ্যালয় থেকে কোন নিয়মিত বেতন-ভাতাও পাওয়া যায় না। এরপর বিশ্ববিদ্যালয়ের কমিটির কাছে নিজের যোগ্যতা প্রমাণ করতে হয়। গবেষণার জন্য গবেষণা-বক্তৃতা দিতে হয় এবং প্রতিপক্ষের প্রশ্নের উত্তর দিতে হয়। অনেক সময় পাঁচ থেকে দশ বছর সময় লেগে যায় এসব সম্পন্ন করে বিশ্ববিদ্যালয়ের শিক্ষক হতে। অবশ্য এটা হয়ে গেলে তখন পূর্ণ অধ্যাপকের মর্যাদা পাওয়া যায়। ফেরেঙ্ক ক্রাউজ খুব কম সময়ের মধ্যে ভিয়েনা ইউনিভার্সিটি অব টেকনোলজির শিক্ষক হয়ে গেলেন। ১৯৯৯ সালে তিনি ফুল প্রফেসর হয়ে গেলেন। ২০০০ সালে তিনি সেই বিশ্ববিদ্যালয়ের সেন্টার ফর এডভান্সড লাইট সোর্সেস-এর ডিরেক্টর নিযুক্ত হলেন। এর তিন বছর পর ২০০৩ সালে তিনি জার্মানিতে ম্যাক্স প্লাংক ইন্সটিটিউট অব কোয়ান্টাম অপটিক্‌স এর ডিরেক্টর পদে যোগ দেন। ২০০৪ সাল থেকে তিনি মিউনিখের লুডভিগ ম্যাক্সিমিলিয়ান ইউনিভার্সিটির এক্সপেরিমেন্টাল ফিজিক্সেরও চেয়ারম্যান হিসেবে কাজ করে আসছেন।


পিয়ের আগস্তিনি



১৯৪১ সালের ২৩ জুলাই ফ্রেন্স টিউনিসিয়ার টিউনিসে জন্ম পিয়ের আগস্তিনির। ১৯৫৯ সালে ফ্রান্সের প্রাইতানি ন্যাশনাল মিলিটারি স্কুল থেকে স্কুল পাস করে দক্ষিণ ফ্রান্সের এইক্স-মারসিলি ইউনিভার্সিটিতে ভর্তি হলেন। ১৯৬১ সালে ফিজিক্সে বিএড এবং ১৯৬২ সালে এমএস ডিগ্রি অর্জন করেন। ১৯৬৮ সালে তিনি অপটিক্সে ডক্টরেট ডিগ্রি অর্জন করেন। আলট্রাভায়োলেট রশ্মির মাল্টিলেয়ার ডায়ইলেকট্রিক ফিল্টার নিয়ে পিএইচডি গবেষণা করেন আগস্তিনি। পিএইচডি করার পরের বছরই পিয়ের যোগ দেন ফ্রান্স এটমিক এনার্জি কমিশনের স্যাকলে সেন্টারে। সেখানেই তিনি গবেষণা করেছেন পরবর্তী চৌত্রিশ বছর। ১৯৮৬ থেকে ১৯৯৪ সাল পর্যন্ত  অ্যান লুইলিয়ার এই গবেষণাকেন্দ্রে পিয়ের আগস্তিনির সহকর্মী ছিলেন। কিন্তু সেই সময় তাঁদের মধ্যে উল্লেখযোগ্য যৌথগবেষণা সেরকম হয়নি। তাঁরা যে একদিন নোবেল পুরষ্কার শেয়ার করবেন সেদিন কেউই ভাবতে পারেননি। ২০০২ সাল থেকে ২০০৪ পর্যন্ত পিয়ের আগস্তিনি নিউইয়র্কের ব্রুকহ্যাভেন ন্যাশনাল ল্যাবরেটরিতে ভিজিটিং সায়েন্টিস্ট হিসেবে কাজ করার পর ২০০৫ সালে ওহাইও স্টেট ইউনিভার্সিটির ফিজিক্স ডিপার্টমেন্টে যোগ দেন প্রফেসর হিসেবে। ২০১৮ সালে ৭৭ বছর বয়সে তিনি অবসর গ্রহণ করার পর ইমেরিটাস অধ্যাপক হিসেবে তালিকাভুক্ত হন। এবছর তিনি নোবেল পুরষ্কার পাবেন এটা অপ্রত্যাশিত ছিল। অবশ্য এর আগে তিনি বেশ কিছু গুরুত্বপূর্ণ পুরষ্কার পেয়েছিলেন। ১৯৯৫ সালে ফ্রেন্স একাডেমি অব সায়েন্সের গুস্তাভ রিবাউড প্রাইজ, ২০০৩ সালে গে-লুসাক-হামবোল্ট প্রাইজ, ২০০৭ সালে অপটিক্যাল সোসাইটি অব আমেরিকার মেগার্স অ্যাওয়ার্ড ইন স্পেকট্রোস্কোপি।


নোবেল পুরষ্কার ২০২৩ – চিকিৎসাবিজ্ঞান

 



২০২৩ সালের চিকিৎসাবিজ্ঞানে নোবেল পুরষ্কার পেয়েছেন প্রফেসর কাটালিন কারিকো এবং প্রফেসর ড্রিউ ওয়েইজম্যান। কোভিড-১৯ এর বিরুদ্ধে সফল এমআরএনএ ভ্যাক্সিন উদ্ভাবনের জন্য তাঁরা এই পুরষ্কার পেয়েছেন। 


কাটালিন কারিকো



কাটালিন কারিকোর জন্ম ১৯৫৫ সালে হাঙ্গেরিতে। ১৯৮২ সালে পিএইচডি এবং ১৯৮৫ সাল পর্যন্ত হাঙ্গেরির একাডেমি অব সায়েন্সে পোস্টডক্টরেট গবেষণা করেন। এরপর তিনি আমেরিকার ফিলাডেলফিয়ার টেম্পল ইউনিভার্সিটিতে গবেষণা শুরু করেন। ১৯৮৯ সালে তিনি পেনসিভেলনিয়া ইউনিভার্সিটিতে যোগ দেন, এবং সেখানেই ছিলেন ২০১৩ পর্যন্ত। এরপর তিনি বায়োটেক আরএনএ ফার্মাসিউটিক্যাল কোম্পানিতে যোগ দেন। ২০২১ সালে তিনি সেখান থেকে আবার হাঙ্গেরিতে ফিরে গিয়ে জেগেড ইউনিভার্সিটিতে প্রফেসর হিসেবে যোগ দেন, একই সাথে পেনসিলভেনিয়া ইউনিভার্সিটির পেরেলম্যান স্কুল অব মেডিসিনের সংযুক্ত-অধ্যাপক হিসেবেও গবেষণার সাথে যুক্ত থাকেন। 

ড্রিউ ওয়েইজম্যান



ড্রিউ ওয়েইজম্যানের জন্ম ১৯৫৯ সালে আমেরিকার ম্যাচাচুসেটস এর লেক্সিংটনে। ১৯৮৭তে বোস্টন ইউনিভার্সিটি থেকে এমডি এবং পিএইচডি ডিগ্রি অর্জন করেন। হার্ভার্ড মেডিক্যাল স্কুলে তিনি পোস্ট ডক্টরেট রিসার্চ করেছেন। ১৯৯৭ সালে তিনি পেনসিল্ভেনিয়া ইউনিভার্সিটির পেরেলম্যান স্কুল অব মেডিসিনে যোগ দেন। তিনি এখন সেখানকার ভ্যাক্সিন রিসার্চ প্রফেসর এবং পেন ইন্সটিটিউট ফর আরএনএ ইনোভেশান্স এর ডিরেক্টর। 

কোভিড-১৯ সংক্রমণের মধ্যেই এই বিজ্ঞানীদ্বয় এবং তাঁদের দল ভ্যাক্সিন উদ্ভাবন করেন - যা লক্ষ লক্ষ মানুষের জীবন বাঁচিয়েছে।


Saturday, 19 November 2022

কোয়ান্টামের জটাজাল - পদার্থবিজ্ঞানে নোবেল পুরষ্কার ২০২২

 




“আচ্ছা, তুমি কি বিশ্বাস করো যে যখন তুমি চাঁদের দিকে তাকাও তখনি শুধু চাঁদের অস্তিত্ব আছে, আর অন্য সময়ে নেই?” এ কেমন প্রশ্ন? আমরা তো জানি যে চাঁদ আছে গত সাড়ে চারশ কোটি বছর থেকে পৃথিবীর আকাশে। থাকবে আরো কয়েক শ কোটি বছর। কিন্তু সেখানে চাঁদের অস্তিত্ব কেন নির্ভর করবে তার দর্শকের উপর? প্রশ্নটাকে এলেবেলে প্রশ্ন বলে উড়িয়ে দেয়ার কোন উপায় নেই যখন স্বয়ং আইনস্টাইন এই প্রশ্ন করেন। আইনস্টাইন তাঁর জীবনীকার পদার্থবিজ্ঞানী আব্রাহাম পেইজকে এই প্রশ্নটি করেছিলেন কোয়ান্টাম মেকানিক্সের রহস্যময়তার প্রতি তাঁর অস্বীকৃতির সমর্থনে। এটা ঠিক যে চাঁদের মতো বড় আকারের বস্তুর প্রসঙ্গে এরকম প্রশ্ন খাটে না। কিন্তু ক্ষুদ্রাতিক্ষুদ্র কণার যে ধর্ম কোয়ান্টাম মেকানিক্স দিয়ে ব্যাখ্যা করতে হয় – সেখানে দেখা যায় – কোন একটি কণা কীরকম আচরণ করবে তা নির্ভর করে তার দর্শকের উপর। কোয়ান্টাম মেকানিক্স কণার আচরণের সম্ভাবনার কথা বলতে পারে, কিন্তু সুনির্দিষ্টভাবে কী হবে তা বলতে পারে না। সুনির্দিষ্টভাবে বলতে গেলে কণাটিকে দেখতে হবে।

পরমাণুর ভেতর তার উপাদান – ইলেকট্রন, প্রোটন, নিউট্রন – এগুলি কীভাবে বিন্যস্ত হয়ে থাকবে তার সবচেয়ে ভালো ব্যাখ্যা দেয়া যায় কোয়ান্টাম তত্ত্বের মাধ্যমে। ধরা যাক হাইড্রোজেন পরমাণুর কথা। এর একটিমাত্র ইলেকট্রন। এই ইলেকট্রনের অন্তঃঘূর্ণন বা স্পিন হতে পারে +১/২ কিংবা -১/২। দেখার আগ পর্যন্ত কিছুতেই সুনির্দিষ্টভাবে বলা সম্ভব নয় যে কোন একটি হাইড্রোজেন পরমাণুর ইলেকট্রনের স্পিন +১/২ হবে কি -১/২ হবে। হাইড্রোজেন পরমাণুর বদলে যদি হিলিয়াম পরমাণুর কথা বিবেচনা করি – দেখা যাবে ব্যাপারটা আরো রহস্যময়। হিলিয়াম পরমাণুতে দুটো ইলেকট্রন আছে। তারা একই কক্ষপথে থাকে। পাউলির বর্জননীতি মেনে চলতে হয় তাদের। সেই নীতি অনুযায়ী একটি ইলেকট্রনের স্পিন যদি +১/২ হয়, অন্য ইলেকট্রনের স্পিন অবশ্যই -১/২ হবে। কোন ইলেকট্রনের স্পিন কী হবে তা না দেখে সুনির্দিষ্টভাবে বলার উপায় নেই। তবে এক্ষেত্রে একটি ইলেকট্রনের স্পিন যদি জানতে পারি, অন্যটির স্পিন কী হবে তা না দেখেই বলে দেয়া যায়। কিন্তু একটাও না দেখা পর্যন্ত কোনটারই স্পিন কী হবে তা বলা যাচ্ছে না। তার মানে কি এই দাঁড়ায় যে ফলাফল নির্ভর করছে দর্শকের উপর? কোয়ান্টাম মেকানিক্স বলে - ঠিক তাই । যতক্ষণ দেখা না হচ্ছে – ততক্ষণ সম্ভাবনার সুপারপজিশান স্টেটেই থাকছে ইলেকট্রনের স্পিন।

এরকম ব্যাপার আমরা কয়েন টস করার সাথেও তুলনা করতে পারি। একটি কয়েন শূন্যে ছুঁড়ে দিলে তা নিচে পড়ার পর হেড অথবা টেল উঠবে তা আমরা জানি। কিন্তু ঠিক কী উঠবে তা দেখার আগপর্যন্ত বলতে পারি না। তাহলে কয়েন যতক্ষণ শূন্যে থাকে – ততক্ষণ কি তার হেড কিংবা টেল কোনোটাই থাকবে না? এই গোলমেলে প্রশ্নের উত্তর কোয়ান্টাম মেকানিক্সের বিজ্ঞানীদের দিতে হয়েছে অনেক বছর। আইনস্টাইন কোয়ান্টাম মেকানিক্সের সম্ভাবনার নিয়ম মেনে নিতে পারেননি। তাই কোয়ান্টাম মেকানিক্সের ধারণার প্রতি তিনি চ্যালেঞ্জ ছুঁড়ে দিয়েছিলেন বার বার। এবং বলা যায় তা থেকেই পথ খুলে গেছে কোয়ান্টাম মেকানিক্সের বিশাল ব্যবহারিক দিকের।

কোয়ান্টাম কম্পিউটার, কোয়ান্টাম তথ্যপ্রবাহসহ কোয়ান্টাম প্রযুক্তির অসংখ্য নতুন সম্ভাবনার দরজা খুলে গেছে আজ। এই সম্ভাবনার দরজা যাঁরা খুলে দিয়েছেন, তাঁদেরই তিনজন পদার্থবিজ্ঞানী এবছরের নোবেল পুরষ্কার পেয়েছেন।

কোয়ান্টাম মেকানিক্সের যে তিনজন পরীক্ষণ-বিজ্ঞানী ২০২২ সালের পদার্থবিজ্ঞানের নোবেল পুরষ্কার পেয়েছেন – তাঁরা হলেন ফ্রান্সের ইকোল পলিটেকনিকের অধ্যাপক আলান এসপেক্ট (Alan Aspect), ক্যালিফোর্নিয়া জে এফ ক্লাউসার অ্যান্ড অ্যাসোসিয়েটস এর প্রধান বিজ্ঞানী জন এফ ক্লাউসার (John F Clauser), এবং অস্ট্রিয়ার ভিয়েনা বিশ্ববিদ্যালয়ের অধ্যাপক আন্তন সাইলিঙ্গার (Anton Zeilinger)। ২০১০ সালে যখন এই ত্রয়ী পদার্থবিজ্ঞানে উল্‌ফ পুরষ্কার পেয়েছিলেন, তখন থেকেই বিজ্ঞানীরা আশা করে আসছিলেন যে এই তিনজনকে পদার্থবিজ্ঞানে নোবেল পুরষ্কার দেয়া হবে যেকোনো বছর। তাই এবছর যখন নোবেল কমিটি এই তিনজনের নাম ঘোষণা করলো, তখন পদার্থবিজ্ঞানের সবাই খুব খুশি হয়েছেন, কিন্তু আশ্চর্য হননি। এই তিনজন বিজ্ঞানীরই কোয়ান্টাম মেকানিক্সের পরীক্ষণ কাজের প্রতি আগ্রহের মূল কারণ ছিল আইনস্টাইনের কোয়ান্টাম মেকানিক্সের বিরোধিতা।

আজ থেকে ঠিক একশ বছর আগে ১৯২২ সালের পদার্থবিজ্ঞানে নোবেল পুরষ্কার পেয়েছিলেন কোয়ান্টাম মেকানিক্সের অন্যতম স্থপতি নীলস বোর। কোয়ান্টাম মেকানিক্সের স্থপতিদের মধ্যে ম্যাক্স প্ল্যাংক, নীলস বোর, লুই ডি ব্রগলি, ম্যাক্স বর্ন, পল ডিরাক, ভার্নার হাইজেনবার্গ, উলফগং পাউলি, এরভিন শ্রোডিঙ্গার, রিচার্ড ফাইনম্যান – সবাই নোবেল পুরষ্কার পেয়েছেন। আইনস্টাইন কোয়ান্টাম মেকানিক্সের অনিশ্চয়তার নীতিকে সমর্থন করেননি। কিন্তু তাঁর আপেক্ষিকতার সূত্র প্রয়োগে কোয়ান্টাম মেকানিক্স হয়ে উঠেছে আরো বেশি শক্তিশালী। আইনস্টাইন নিজের অজান্তেই শক্ত ভিত্তি দিয়ে গেছেন কোয়ান্টাম মেকানিক্সের। বলা চলে আইনস্টাইনের বিরোধিতার কারণেই আবিষ্কৃত হয়েছে কোয়ান্টাম মেকানিক্সের অনেক কিছু।

হাইজেনবার্গের অনিশ্চয়তার নীতি কোয়ান্টাম মেকানিক্সের একটি অন্যতম প্রধান ভিত্তি। এই নীতি অনুসারে কোন কণার শক্তি এবং সময় একই সাথে সঠিকভাবে মাপা যায় না। মাপতে গেলে সেখানে কিছুটা অনিশ্চয়তা থাকবেই। একই ব্যাপার ঘটে কোন কণার অবস্থান এবং ভরবেগ মাপার ক্ষেত্রেও। আমরা যদি কোন কণার সঠিক অবস্থান মাপতে যাই, সেই সময়ে তার ভরবেগ কত তা সঠিকভাবে জানি না। যখন ভরবেগ মাপতে যাই, তখন কণার অবস্থানের পরিবর্তন ঘটে। আইনস্টাইন এই ব্যাপারটি মেনে নিতে পারছিলেন না। তিনি বলতেন, কোন নিয়মের মধ্যে যদি অনিশ্চয়তার সম্ভাবনা থাকে তাহলে সেই নিয়ম অসম্পূর্ণ।

১৯৩০ সালের ব্রাসেলস এ অনুষ্ঠিত সলভে কনফারেন্সে আইনস্টাইন নীল্‌স বোরকে একটি কঠিন প্রশ্নের মুখোমুখি করে দিলেন। আইনস্টাইন একটি থট-এক্সপেরিমেন্ট বা মানস-পরীক্ষার বর্ণনা দিলেন। ধরা যাক একটি আলোভর্তি বাক্সের কথা। বাক্সের ভেতর আলোর ফোটন রয়েছে। বাক্সটি ওজন করা হলো। সঠিকভাবে বাক্সের ওজন নেয়া সম্ভব। এরপর বাক্স থেকে সুনির্দিষ্টপদ্ধতিতে একটি সুনির্দিষ্ট সময়ে একটিমাত্র ফোটন বের করে দেয়ার ব্যবস্থা করা হলো। ফোটনটি ঠিক কোন্‌ সময়ে বের হয়েছে তা বাক্সের ভেতর রাখা ঘড়ির সাহায্যে সঠিকভাবে মাপা সম্ভব। এখন ফোটনটি বের হয়ে যাবার পর বাক্সটির আবার ওজন নেয়া হলো। ফোটন বের হবার আগের এবং পরের ওজনের পার্থক্য থেকে E = mc2 সূত্র প্রয়োগ করে জানা যাবে বের হয়ে যাওয়া ফোটনটির শক্তি। তাহলে তো দেখা যাচ্ছে একই সময়ে কণার শক্তি এবং সময় দুটোই মাপা যাচ্ছে। তা যদি যায়, তাহলে হাইজেনবার্গের অনিশ্চয়তার সূত্র আর খাটছে না।

নীলস বোর বিপদে পড়ে গেলেন। আইনস্টাইনের এই মানস-পরীক্ষায় আপাত কোন ভুল তিনি বের করতে পারলেন না। কিন্তু কোন ভুল যদি সেখানে না থাকে, তাহলে পুরো কোয়ান্টাম মেকানিক্সের ভিত নড়বড়ে হয়ে যাবে। নীলস বোর ব্রাসেলস এর হোটেলরুমে বসে আইনস্টাইনের মানস-পরীক্ষা নিয়ে ভাবলেন সারা রাত। ভাবতে ভাবতে পেয়ে গেলেন সমাধান। আইনস্টাইনের মানস-পরীক্ষায় আইনস্টাইন নিজের তত্ত্বই প্রয়োগ করতে ভুলে গেছেন!

পরদিন নীলস বোর আইনস্টাইনকে বললেন কোথায় ভুলটা করেছেন আইনস্টাইন। বাক্স থেকে ফোটন যখন বের হচ্ছে তখন ফোটনের স্থান পরিবর্তন হচ্ছে। এই স্থান পরিবর্তনের ফলে ঘড়ির স্থান-কালের (স্পেস-টাইম) পরিবর্তন ঘটবে। আইনস্টাইনের জেনারেল থিওরি অব রিলেটিভি বা আপেক্ষিকতার সার্বিক তত্ত্ব অনুসারে তখন সময়ের মাপে অনিশ্চয়তা দেখা যাবে – তা যত ছোটই হোক। সুতরাং ফোটনের শক্তি ঠিকমতো মাপা গেলেও সময়ের মাপে অনিশ্চয়তা রয়েই যাবে। আইনস্টাইন মেনে নিতে বাধ্য হলেন।

এরপর কয়েক বছর মোটামুটি চুপ করে থাকলেও আইনস্টাইন মন থেকে মানতে পারছিলেন না যে এত অনিশ্চয়তা নিয়েই কোয়ান্টাম মেকানিক্স এতটা সাফল্য লাভ করছে। ১৯৩৫ সালে তিনি তাঁর দুজন নবীন সহকর্মী রাশিয়ান-আমেরিকান বরিস পডলস্কি এবং ইসরায়েলি-আমেরিকান নাথান রোজেনের সাথে যৌথভাবে একটি গবেষণাপত্র প্রকাশ করলেন ফিজিক্যাল রিভিউতে। তাঁদের তিনজনের নামানুসারে এই গবেষণাপত্রটি ইপিআর পেপার নামে খ্যাতিলাভ করেছে। বিশেষ করে আমেরিকার প্রচারমাধ্যমগুলির কল্যাণে। এই পেপারটি প্রকাশিত হবার পর নিউইয়র্ক টাইমস “আইনস্টাইন কোয়ান্টাম মেকানিক্সকে আক্রমণ করেছেন” শিরোনামে মুখরোচক সংবাদ প্রকাশ করেছিল।

কী ছিল এই গবেষণাপত্রে? এই গবেষণাপত্রে আইনস্টাইন আক্রমণ করেছিলেন কোয়ান্টাম এনটেঙ্গেলমেন্টকে। কোয়ান্টাম মেকানিক্সের একটা বিশেষ ধর্ম হলো – কোয়ান্টাম এনটেঙ্গেলমেন্ট বা কোয়ান্টামের জটাজাল। একই উৎস থেকে উৎপন্ন দুটো কোয়ান্টাম কণা এমন যুগলভাবে কাজ করে যেন কোন অদৃশ্য সূতার টানে একটি অপরটির সাথে যোগাযোগ করতে থাকে – তাদের মাঝখানের বাস্তব দূরত্ব যাই হোক না কেন। সেই অবস্থায় একটি কণাকে নিয়ন্ত্রণ করতে পারলে অন্য কণাকেও আপনাআপনি  নিয়ন্ত্রণ করা সম্ভব। এই ব্যাপারটা কীভাবে ঘটে তা সহজে বোঝা যায় না।

কোয়ান্টাম মেকানিক্সের গোড়া থেকেই কোয়ান্টাম-কণার পারস্পরিক সম্পর্কের ব্যাপারটাকে খুবই গুরুত্বের সাথে দেখা হয়েছে। পরমাণুর কোয়ান্টাম মডেলের ভিত্তিই হলো কোয়ান্টাম নাম্বার  – যা কণাগুলির পারস্পরিক সম্পর্কের ভিত্তিতেই পাওয়া যায়। যেমন হিলিয়াম পরমাণুর দুটো ইলেকট্রনের স্পিনের কথা আমরা আগেই বলেছি। কোয়ান্টাম তত্ত্ব অনুসারে কোয়ান্টাম-কণা তরঙ্গ আকারেও থাকতে পারে।

তরঙ্গের ক্ষেত্রে দুটো তরঙ্গের পারস্পরিক সম্পর্কের ব্যাপারটা ব্যাখ্যা করা যায় আরো সহজে। দুটো তরঙ্গ যখন একটি আরেকটিকে কোনো না কোনোভাবে স্পর্শ করে তখন তারা পরস্পরের সাথে জড়িয়ে পড়ে। এরপর তাদের অবস্থা আর আগের মতো থাকে না। এরপর তারা যদি পরস্পরের কাছ থেকে অনেক দূরেও চলে যায়, তাদেরকে পুরোপুরি বিচ্ছিন্ন করা যায় না। তখন একটি তরঙ্গের গতিপ্রকৃতি দেখে অন্য তরঙ্গের গতিপ্রকৃতি অনুমান করা যায়।




আইনস্টাইন এই ব্যাপারটা মেনে নিতে পারছিলেন না। একই উৎস থেকে উৎপন্ন দুটি কণা পরস্পরের কাছ থেকে যত দূরেই যাক না কেন, একটির সাথে অন্যটি এনটেঙ্গেল্ড হয়ে থাকবে বা জটাজালে যুক্ত থাকবে তা স্বাভাবিক চিন্তায় কিছুতেই মেনে নেয়া যায় না। অবশ্য কোয়ান্টাম এনটেঙ্গেলমেন্ট কথাটি প্রথম চালু করেছিলেন এরভিন শ্রোডিঙ্গার, আইনস্টাইনের ইপিআর গবেষণাপত্র প্রকাশের পর তার জবাব দিতে গিয়ে।

১৯৩৫ সালের ফিজিক্যাল রিভিউর ৪৭ সংখ্যায় প্রকাশিত Can quantum mechanical description be considered complete? প্রবন্ধ – যা ইপিআর পেপার নামে খ্যাত, আইনস্টাইন, পডলস্কি এবং রোজেন একটি মানস-পরীক্ষণ বিশ্লেষণ করেছেন। একই উৎস থেকে দুটো কোয়ান্টাম-কণা উৎপন্ন হয়ে পরস্পরের বিপরীত দিকে চলে গেছে অনেকদূর। এই দুটো কণা পারস্পরিক অদৃশ্য জটাজালে আবদ্ধ। কোয়ান্টাম মেকানিক্সের নিয়ম অনুযায়ী একজন পর্যবেক্ষণকারী যতক্ষণ কণাগুলির স্পিন না দেখছে ততক্ষণ পর্যন্ত তাদের কোনটারই স্পিন সুনির্দিষ্ট নয়। তারা তখনো কোয়ান্টাম সুপারপজিশান স্টেটে আছে। এখন কোন দর্শক যদি একটি কণার স্পিন +১/২ বা স্পিন-আপ দেখে, তাহলে অন্য কণাটির স্পিন সাথে সাথে -১/২ বা ডাউন হতে বাধ্য। কারণ পদার্থবিজ্ঞানের নিয়ম অনুযায়ী মোট স্পিন সংরক্ষিত। অর্থাৎ কোন সিস্টেমের শুরুতে যদি মোট স্পিন শূন্য হয়, শেষেও মোট স্পিন হবে শূন্য। সেক্ষেত্রে একটি কণার স্পিন +১/২ হলে অন্যটির স্পিন -১/২ হতে বাধ্য। সেক্ষেত্রে যে কোনো একটি কণা দেখে অন্য কণাটি যেখানে যত দূরেই থাকুক না কেন তার ধর্ম বলে দেয়া সম্ভব। আইনস্টাইনের ভাষায় এটা এক ধরনের স্পুকি অর্থাৎ ভুতুড়ে ব্যাপার। মনে হচ্ছে অনেক দূর থেকে একটি কণা আরেকটি কণাকে নিয়ন্ত্রণ করছে তাৎক্ষণিকভাবে। কণাগুলি যদি পরস্পরের কাছ থেকে আলোকবর্ষ দূরেও থাকে, তাহলেও তৎক্ষণাৎ নিয়ন্ত্রণ ঘটে যাচ্ছে। এরকম কাজের যে গতি তা আলোর গতির চেয়েও দ্রুত। কিন্তু তা তো অসম্ভব। এরকম ভুতুড়ে ব্যাপার বিজ্ঞানে চলতে পারে না। কোয়ান্টাম মেকানিক্স যদি সত্যিই এভাবে কাজ করে তাহলে এখানে এমন কিছু হিডেন ভ্যারিয়েবল বা গুপ্ত চলক আছে যা আমরা এখনো জানতে পারিনি। এই যুক্তি দেখিয়ে ইপিআর পেপারে কোয়ান্টাম মেকানিক্সকে অসম্পূর্ণ বিজ্ঞান বলে অভিহিত করেছেন আইনস্টাইন এবং তাঁর সহযোগীরা।

এই প্রবন্ধের উত্তরে আরভিন শ্রোডিঙ্গার Mathematical Proceedings of the Cambridge Philosophical Society’র জার্নালে প্রকাশিত ‘Discussion of probability relations between separated system’ প্রবন্ধে লেখেন যে দুটো কোয়ান্টাম কণা পরস্পরের সান্নিধ্যে এলে পরস্পর এনটেঙ্গেল্ড বা জটাজালে আবদ্ধ হয়ে যায়। কোয়ান্টাম জটাজাল বুঝতেও জটিল, তার কাজকর্মও জটিল, কিন্তু সত্য।

এরপর কোয়ান্টাম মেকানিক্সের সাফল্য অনেকদূর এগিয়ে গেছে। ইপিআর পেপার নিয়ে অনেক বছর কেউ আর মাথা ঘামায়নি। বিশেষ করে গাণিতিক পদার্থবিজ্ঞানী জন ফন নিউম্যান তত্ত্বীয়ভাবে প্রমাণ করে দিয়েছেন যে কোয়ান্টাম মেকানিক্সের কাজ করার জন্য কোন গুপ্ত চলকের দরকার নেই।

কিন্তু আইনস্টাইনের মৃত্যুর প্রায় এক দশক পরে ইপিআর পেপারের সমর্থনে ১৯৬৪ সালে একটি নতুন গবেষণাপত্র প্রকাশ করলেন আইরিশ পদার্থবিজ্ঞানী জন স্টুয়ার্ট বেল। বেল কাজ করতেন জেনিভার সার্ন গবেষণাকেন্দ্রে। এক বছরের ছুটিতে তিনি এই পেপার লিখেছিলেন যা পরে ‘বেলস ইনইকুয়েলিটি’ নামে খ্যাতিলাভ করে। আইনস্টাইনের মতো বেলও একটি মানস-পরীক্ষণের মাধ্যমে প্রমাণ করতে চেষ্টা করলেন যে কোয়ান্টাম এনটেঙ্গেলমেন্টে হিডেন ভ্যারিয়েবলগুলি তথ্য জোগান দেয়। যাদের উপস্থিতি দেখা যায় না, কিন্তু গুপ্তভাবেই তারা কাজ করে। তিনি তাঁর সহকর্মী গবেষক প্রফেসর বার্টলম্যানের উদাহরণ দিলেন – যিনি দুই পায়ে দুই রঙের মোজা পরেন। এখন এই তথ্য যদি কারো জানা থাকে, তাহলে তাঁর এক পায়ের মোজার রঙ দেখেই অন্য পায়ের মোজার রঙ জেনে যাবেন যে কেউই। এখানে গুপ্ত তথ্য দেয়াই আছে। একই রকম ভাবে স্পিনের ক্ষেত্রেও হচ্ছে। কিন্তু সবগুলি গুপ্ত চলকের মান জানা না থাকলে কোয়ান্টাম-কণার একটিকে জানার পর অন্যটির সব ধর্ম জানা যাবে এমন কোন কথা নেই। সেখানে ফলাফলের অসমানতা থাকবে। এটাই বেলের অসমানতা বা বেলস ইনইকুয়েলিটি। জন বেল তাঁর প্রবন্ধে পরীক্ষণ পদার্থবিজ্ঞানীদের আহ্বান করেছিলেন কোয়ান্টাম এনটেঙ্গেলমেন্ট পরীক্ষণের মাধ্যমে প্রমাণ করার জন্য।

জন বেলের তত্ত্ব পরীক্ষা করার জন্য প্রথম এগিয়ে এলেন আমেরিকান পদার্থবিজ্ঞানী জন ক্লাউজার – যিনি এবার পদার্থবিজ্ঞানে নোবেল পুরষ্কার পেয়েছেন।

জন ফ্রান্সিস ক্লাউজারের জন্ম ১৯৪২ সালের ১ ডিসেম্বর, ক্যালিফোর্নিয়ার প্যাসাডেনায়। ক্যালিফোর্নিয়া ইন্সটিটিউট অব টেকনোলজি থেকে পদার্থবিজ্ঞানে বিএসসি করেন ১৯৬৪ সালে। এরপর কলম্বিয়া বিশ্ববিদ্যালয় থেকে ১৯৬৪ সালে এমএ এবং ১৯৬৯ সালে পিএইচডি সম্পন্ন করেন। তাঁর পিএইচডি গবেষণার বিষয় ছিল মলিকিউলার অ্যাস্ট্রোফিজিক্স। কিন্তু ছাত্রাবস্থা থেকেই তিনি জ্যোতির্বিজ্ঞানের পাশাপাশি কোয়ান্টাম মেকানিক্সের প্রতিও খুব আগ্রহী ছিলেন।

১৯৭২ সালে জন ক্লাউজার  ইউনিভার্সিটি অব ক্যালিফোর্নিয়ায় পোস্টডক্টরেট করার সময় তাঁর পিএইচডি গবেষক-ছাত্র স্টুয়ার্ড ফ্রিডম্যানের সাথে মিলে বেলের অসমানতা পরীক্ষা করার প্রস্তুতি নিলেন। তিনি ইলেকট্রনের স্পিনের বদলে আলোর কণা ফোটনের পোলারাইজেশানের মাধ্যমে ফলাফল মাপার চেষ্টা করলেন। বিজ্ঞানী রিচার্ড ফাইনম্যানসহ অনেকেই তখন ক্লাউজারকে নিরুৎসাহিত করে বলেছিলেন কোয়ান্টাম মেকানিক্সকে আর পরীক্ষা দেয়ার দরকার নেই। কিন্তু জন বেল ক্লাউজারকে খুব উৎসাহ দিয়েছিলেন পরীক্ষাটি করে দেখার জন্য। জন বেল দুই ডলার বাজি ধরেছিলেন আইনস্টাইনের পক্ষে। অর্থাৎ বেলস ইনইকুয়েলিটি সত্য প্রমাণিত হবে।


 



ক্লাউজার ক্যালসিয়াম পরমাণুর উপর বিশেষ আলো ফেলে ক্যালসিয়াম থেকে ফোটন নির্গমনের ব্যবস্থা করলেন। ফোটনগুলি একই জায়গা থেকে উৎপন্ন হচ্ছে – ফলে কোয়ান্টাম জটাজালে আবদ্ধ। দুইটি বিপরীত পাশে ফিল্টার স্থাপন করে ফোটনের পোলারাইজেশান মেপে দেখলেন। ফিল্টারের দিক অনেকবার পরিবর্তন করে তিনি দেখলেন যে একটি ফোটনের পোলারাইজেশান থেকে অন্য ফোটনের পোলারাইজেশান যেরকম হবার কথা ঠিক সেরকমই হচ্ছে। তার মানে কোয়ান্টাম মেকানিক্সের জন্য কোন হিডেন ভ্যারিয়েবলের দরকার নেই। বেলস ইনইকুয়েলিটি ভুল। জন বেল বাজিতে হেরে গেলেন, কোয়ান্টাম মেকানিক্সের জয় হলো।


 

জন ক্লাউজার তাঁর পরীক্ষা করছেন (ফিজিক্স টু ডে’র সৌজন্যে প্রাপ্ত ছবি)



জন ক্লাউজারের পরীক্ষণে কোয়ান্টাম মেকানিক্সের জটাজাল সঠিক প্রমাণিত হলেও সেখানে কিছু সীমাবদ্ধতা ছিল। ফিল্টারগুলিকে আগে থেকে নির্দিষ্ট জায়গায় বসানো হয়েছিল। হতে পারে এই ফিল্টারের অবস্থান ফোটনগুলির গতিতে কোনভাবে প্রভাব বিস্তার করেছে। এই সীমাবদ্ধতা কাটিয়ে আরো নিখুঁতভাবে পরীক্ষা করে দেখার জন্য এগিয়ে এলেন ফ্রান্সের পদার্থবিজ্ঞানী আলান অ্যাসপেক্ট যিনি এবছরের আরেকজন নোবেলজয়ী।

অ্যলান অ্যাসপেক্ট এর জন্ম ১৯৪৭ সালের ১৫ জুন ফ্রান্সের আজান (Agen) শহরে। ১৯৬৯ সালে তিনি পদার্থবিজ্ঞানে মাস্টার্স ডিগ্রি অর্জন করেন প্যারিস-সুদ থেকে। এরপর তিনি তিন বছর ক্যামেরুনে গিয়ে শিক্ষকতা করেছেন। ১৯৮৩ সালে তিনি পিএইচডি অর্জন করেন। পিএইচডি গবেষণা করার সময়েই তিনি বেলস ইনইকুয়েলিটির পরীক্ষাটি করেন।

 



জন ক্লাউজারের পরীক্ষণে যেসব সীমাবদ্ধতা ছিল – যেমন ফিল্টারের অবস্থান আগে থেকে জানা, এসব দূর করার ব্যবস্থা করেন অ্যালান অ্যাসপেক্ট। তিনি ফোটন নির্গমনের হার বাড়ানোর পাশাপাশি ট্রান্সডিউসার ব্যবহার করে ফিল্টারের অবস্থান প্রতি সেকেন্ডে কয়েক লক্ষবারের বেশি পরিবর্তন করার ব্যবস্থা করলেন। আলোর দিক পরিবর্তন করার ব্যবস্থা করলেন সেকেন্ড আড়াই কোটি বার। এই পরিবর্তনের ফলে ফোটনগুলি আলোর গতিতে চললেও একটি থেকে অন্যটিতে তথ্য আদান-প্রদান করতে পারবে না। ফলে কোন গুপ্ত চলক থাকলেও তা কাজে লাগবে না। এবারেও দেখা গেল – কোয়ান্টামের জটাজালে আবদ্ধ ফোটনগুলি কোয়ান্টাম মেকানিক্সের নিয়ম মেনেই চলছে।

অ্যালান অ্যাসপেক্টের পরীক্ষা থেকে প্রমাণিত হয়ে গেছে যে কোয়ান্টাম এন্টেঙ্গেলমেন্টে কোন ধরনের গুপ্ত চলকের মাধ্যমে কণাগুলি আগে থেকে কোন তথ্য পেয়ে যায় না। কিন্তু তারপরেও বিজ্ঞানীদের সন্দেহ যায় না। এমনও তো হতে পারে কণাগুলি আগে থেকেই বুঝে ফেলছে কীভাবে ডিটেক্টরগুলি কিংবা ফিল্টারগুলির দিক পরিবর্তন হবে! এই সন্দেহও দূর করার জন্য এগিয়ে এলেন অস্ট্রিয়ার পদার্থবিজ্ঞানী আন্তন সাইলিঙ্গার – যিনিও এবার নোবেল পুরষ্কার পেলেন।

আন্তন সাইলিঙ্গারের জন্ম অস্ট্রিয়ায় ১৯৪৫ সালের ২০ মে। ভিয়েনা বিশ্ববিদ্যালয় থেকে তিনি পিএইচডি অর্জন করেছেন ১৯৭১ সালে। বর্তমানে তিনি ভিয়েনা বিশ্ববিদ্যালয়ের ইমেরিটাস প্রফেসর।

২০১৭ সালে প্রফেসর সাইলিঙ্গারের গবেষকদল মহাকাশের তারার আলো থেকে ভেসে আসা ফোটনকে কাজে লাগিয়ে বেলস ইনইকুইলিটি পরীক্ষাটি আবার করেন।



 

প্রফেসর সাইলিঙ্গার বিশেষ ধরনের কৃস্টালের উপর লেজার আলো প্রয়োগ করে ফোটন তৈরি করেন। আবার একই সাথে মহাকাশের দূর নক্ষত্র থেকে ভেসে আসা আলো ফেলার ব্যবস্থাও করেন কৃস্টালের উপর। মহাকাশ থেকে ভেসে আসা ফোটনগুলিও কোয়ান্টাম এনটেঙ্গেলমেন্ট মেনে চলেছে। তার মানে কোয়ান্টাম মেকানিক্সের জন্য কোন ধরনের গুপ্ত চলকের দরকার নেই। কিন্তু কোয়ান্টাম এন্টেঙ্গেলমেন্ট কীভাবে কাজ করে তা এখনো রহস্যই রয়ে গেছে।

এই পরীক্ষা করার বিশ বছর আগে থেকেই কোয়ান্টামের জটাজাল কাজে লাগিয়ে কোয়ান্টাম টেলিপোর্টেশান পরীক্ষা করা শুরু করেছেন। যেহেতু কোয়ান্টামের জটাজালে আবদ্ধ কণার একটিকে জানতে পারলে অন্যটিকেও জানা হয়ে যায়, সেহেতু একপ্রান্তের কণার পর কণা সাজিয়ে অন্যপ্রান্তে হুবহু কপি করে ফেলা সম্ভব। প্রফেসর সাইলিঙ্গারের দল কোয়ান্টাম টেলিপোর্টেশানে কিছুটা সাফল্য অর্জন করেছেন।

কোয়ান্টামের জটাজালের সবচেয়ে বেশি ব্যবহার হবে কোয়ান্টাম কম্পিউটারে এবং কোয়ান্টাম এনক্রিপশানে। তথ্যপ্রযুক্তির এই দুর্বার গতির যুগে সবচেয়ে বড় ঝুঁকিতে পড়তে হয় তথ্যচুরি হয়ে যাবার সম্ভাবনার কারণে। প্রচলিত ডিজিটাল কম্পিউটারের তথ্যপ্রবাহে তথ্যচুরির হাত থেকে বাঁচতে এবং গোপনীয়তা রক্ষায় যে কৌশল অবলম্বন করা হয় – তাতে একই তথ্যের অনেকগুলি কপি করে গুপ্ত সংকেতের মাধ্যমে তা সুরক্ষিত রাখা হয়। কিন্তু কোয়ান্টাম এনক্রিপশানে কোয়ান্টামের জটাজাল অত্যন্ত জটিল গুপ্ত সংকেত তাৎক্ষণিকভাবে তৈরি করবে যা চুরি করার কোন উপায় থাকবে না।

আমাদের ভবিষ্যত প্রযুক্তি হবে কোয়ান্টাম প্রযুক্তি – যার অনেক প্রয়োগ আমরা ইতোমধ্যেই দেখতে পাচ্ছি। এই সময় এবছরের পদার্থবিজ্ঞানে নোবেলপুরষ্কার কোয়ান্টাম তত্ত্বের ব্যবহারিক সাফল্যের উজ্জ্বল স্বীকৃতি।

 

তথ্যসূত্র:

১। এ এম হারুন অর রশীদ, একবিংশ শতাব্দীর বিজ্ঞান ও প্রযুক্তির নতুন দিগন্ত, (বিজ্ঞান সমগ্র), অনুপম প্রকাশনী, ঢাকা ২০১০।

২। Brian Clegg, Cracking Quantum Physics, Cassell, London, 2017.

৩।  www.nobelprize.org

৪। Louisa Gilder, The age of entanglement, Vintage Books, New York, 2008. 

____________

বিজ্ঞানচিন্তা অক্টোবর ২০২২ সংখ্যায় প্রকাশিত











Latest Post

ফ্ল্যাশ রেডিওথেরাপি: ক্যান্সার চিকিৎসায় নতুন সম্ভাবনা

  যে রোগের কাছে পৃথিবীর মানুষ সবচেয়ে বেশি অসহায় – তার নাম ক্যান্সার। প্রতি বছর ক্যান্সার রোগীর সংখ্যা আশংকাজনক হারে বেড়েই চলেছে। ধারণা করা হ...

Popular Posts